Factor
3\left(x-\frac{-2\sqrt{10}-5}{3}\right)\left(x-\frac{2\sqrt{10}-5}{3}\right)
Evaluate
3x^{2}+10x-5
Graph
Share
Copied to clipboard
3x^{2}+10x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 3\left(-5\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{100-4\times 3\left(-5\right)}}{2\times 3}
Square 10.
x=\frac{-10±\sqrt{100-12\left(-5\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-10±\sqrt{100+60}}{2\times 3}
Multiply -12 times -5.
x=\frac{-10±\sqrt{160}}{2\times 3}
Add 100 to 60.
x=\frac{-10±4\sqrt{10}}{2\times 3}
Take the square root of 160.
x=\frac{-10±4\sqrt{10}}{6}
Multiply 2 times 3.
x=\frac{4\sqrt{10}-10}{6}
Now solve the equation x=\frac{-10±4\sqrt{10}}{6} when ± is plus. Add -10 to 4\sqrt{10}.
x=\frac{2\sqrt{10}-5}{3}
Divide -10+4\sqrt{10} by 6.
x=\frac{-4\sqrt{10}-10}{6}
Now solve the equation x=\frac{-10±4\sqrt{10}}{6} when ± is minus. Subtract 4\sqrt{10} from -10.
x=\frac{-2\sqrt{10}-5}{3}
Divide -10-4\sqrt{10} by 6.
3x^{2}+10x-5=3\left(x-\frac{2\sqrt{10}-5}{3}\right)\left(x-\frac{-2\sqrt{10}-5}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+2\sqrt{10}}{3} for x_{1} and \frac{-5-2\sqrt{10}}{3} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}