Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+10x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 3\left(-5\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{100-4\times 3\left(-5\right)}}{2\times 3}
Square 10.
x=\frac{-10±\sqrt{100-12\left(-5\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-10±\sqrt{100+60}}{2\times 3}
Multiply -12 times -5.
x=\frac{-10±\sqrt{160}}{2\times 3}
Add 100 to 60.
x=\frac{-10±4\sqrt{10}}{2\times 3}
Take the square root of 160.
x=\frac{-10±4\sqrt{10}}{6}
Multiply 2 times 3.
x=\frac{4\sqrt{10}-10}{6}
Now solve the equation x=\frac{-10±4\sqrt{10}}{6} when ± is plus. Add -10 to 4\sqrt{10}.
x=\frac{2\sqrt{10}-5}{3}
Divide -10+4\sqrt{10} by 6.
x=\frac{-4\sqrt{10}-10}{6}
Now solve the equation x=\frac{-10±4\sqrt{10}}{6} when ± is minus. Subtract 4\sqrt{10} from -10.
x=\frac{-2\sqrt{10}-5}{3}
Divide -10-4\sqrt{10} by 6.
3x^{2}+10x-5=3\left(x-\frac{2\sqrt{10}-5}{3}\right)\left(x-\frac{-2\sqrt{10}-5}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+2\sqrt{10}}{3} for x_{1} and \frac{-5-2\sqrt{10}}{3} for x_{2}.