Factor
\left(3x-8\right)\left(x+6\right)
Evaluate
\left(3x-8\right)\left(x+6\right)
Graph
Share
Copied to clipboard
a+b=10 ab=3\left(-48\right)=-144
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx-48. To find a and b, set up a system to be solved.
-1,144 -2,72 -3,48 -4,36 -6,24 -8,18 -9,16 -12,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -144.
-1+144=143 -2+72=70 -3+48=45 -4+36=32 -6+24=18 -8+18=10 -9+16=7 -12+12=0
Calculate the sum for each pair.
a=-8 b=18
The solution is the pair that gives sum 10.
\left(3x^{2}-8x\right)+\left(18x-48\right)
Rewrite 3x^{2}+10x-48 as \left(3x^{2}-8x\right)+\left(18x-48\right).
x\left(3x-8\right)+6\left(3x-8\right)
Factor out x in the first and 6 in the second group.
\left(3x-8\right)\left(x+6\right)
Factor out common term 3x-8 by using distributive property.
3x^{2}+10x-48=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 3\left(-48\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{100-4\times 3\left(-48\right)}}{2\times 3}
Square 10.
x=\frac{-10±\sqrt{100-12\left(-48\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-10±\sqrt{100+576}}{2\times 3}
Multiply -12 times -48.
x=\frac{-10±\sqrt{676}}{2\times 3}
Add 100 to 576.
x=\frac{-10±26}{2\times 3}
Take the square root of 676.
x=\frac{-10±26}{6}
Multiply 2 times 3.
x=\frac{16}{6}
Now solve the equation x=\frac{-10±26}{6} when ± is plus. Add -10 to 26.
x=\frac{8}{3}
Reduce the fraction \frac{16}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{36}{6}
Now solve the equation x=\frac{-10±26}{6} when ± is minus. Subtract 26 from -10.
x=-6
Divide -36 by 6.
3x^{2}+10x-48=3\left(x-\frac{8}{3}\right)\left(x-\left(-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{8}{3} for x_{1} and -6 for x_{2}.
3x^{2}+10x-48=3\left(x-\frac{8}{3}\right)\left(x+6\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3x^{2}+10x-48=3\times \frac{3x-8}{3}\left(x+6\right)
Subtract \frac{8}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
3x^{2}+10x-48=\left(3x-8\right)\left(x+6\right)
Cancel out 3, the greatest common factor in 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}