Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=10 ab=3\left(-48\right)=-144
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx-48. To find a and b, set up a system to be solved.
-1,144 -2,72 -3,48 -4,36 -6,24 -8,18 -9,16 -12,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -144.
-1+144=143 -2+72=70 -3+48=45 -4+36=32 -6+24=18 -8+18=10 -9+16=7 -12+12=0
Calculate the sum for each pair.
a=-8 b=18
The solution is the pair that gives sum 10.
\left(3x^{2}-8x\right)+\left(18x-48\right)
Rewrite 3x^{2}+10x-48 as \left(3x^{2}-8x\right)+\left(18x-48\right).
x\left(3x-8\right)+6\left(3x-8\right)
Factor out x in the first and 6 in the second group.
\left(3x-8\right)\left(x+6\right)
Factor out common term 3x-8 by using distributive property.
3x^{2}+10x-48=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 3\left(-48\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{100-4\times 3\left(-48\right)}}{2\times 3}
Square 10.
x=\frac{-10±\sqrt{100-12\left(-48\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-10±\sqrt{100+576}}{2\times 3}
Multiply -12 times -48.
x=\frac{-10±\sqrt{676}}{2\times 3}
Add 100 to 576.
x=\frac{-10±26}{2\times 3}
Take the square root of 676.
x=\frac{-10±26}{6}
Multiply 2 times 3.
x=\frac{16}{6}
Now solve the equation x=\frac{-10±26}{6} when ± is plus. Add -10 to 26.
x=\frac{8}{3}
Reduce the fraction \frac{16}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{36}{6}
Now solve the equation x=\frac{-10±26}{6} when ± is minus. Subtract 26 from -10.
x=-6
Divide -36 by 6.
3x^{2}+10x-48=3\left(x-\frac{8}{3}\right)\left(x-\left(-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{8}{3} for x_{1} and -6 for x_{2}.
3x^{2}+10x-48=3\left(x-\frac{8}{3}\right)\left(x+6\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3x^{2}+10x-48=3\times \frac{3x-8}{3}\left(x+6\right)
Subtract \frac{8}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
3x^{2}+10x-48=\left(3x-8\right)\left(x+6\right)
Cancel out 3, the greatest common factor in 3 and 3.