Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3t^{2}-59t+272=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-\left(-59\right)±\sqrt{\left(-59\right)^{2}-4\times 3\times 272}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-59\right)±\sqrt{3481-4\times 3\times 272}}{2\times 3}
Square -59.
t=\frac{-\left(-59\right)±\sqrt{3481-12\times 272}}{2\times 3}
Multiply -4 times 3.
t=\frac{-\left(-59\right)±\sqrt{3481-3264}}{2\times 3}
Multiply -12 times 272.
t=\frac{-\left(-59\right)±\sqrt{217}}{2\times 3}
Add 3481 to -3264.
t=\frac{59±\sqrt{217}}{2\times 3}
The opposite of -59 is 59.
t=\frac{59±\sqrt{217}}{6}
Multiply 2 times 3.
t=\frac{\sqrt{217}+59}{6}
Now solve the equation t=\frac{59±\sqrt{217}}{6} when ± is plus. Add 59 to \sqrt{217}.
t=\frac{59-\sqrt{217}}{6}
Now solve the equation t=\frac{59±\sqrt{217}}{6} when ± is minus. Subtract \sqrt{217} from 59.
3t^{2}-59t+272=3\left(t-\frac{\sqrt{217}+59}{6}\right)\left(t-\frac{59-\sqrt{217}}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{59+\sqrt{217}}{6} for x_{1} and \frac{59-\sqrt{217}}{6} for x_{2}.