Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

3n^{2}-48n-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 3\left(-2\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -48 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-48\right)±\sqrt{2304-4\times 3\left(-2\right)}}{2\times 3}
Square -48.
n=\frac{-\left(-48\right)±\sqrt{2304-12\left(-2\right)}}{2\times 3}
Multiply -4 times 3.
n=\frac{-\left(-48\right)±\sqrt{2304+24}}{2\times 3}
Multiply -12 times -2.
n=\frac{-\left(-48\right)±\sqrt{2328}}{2\times 3}
Add 2304 to 24.
n=\frac{-\left(-48\right)±2\sqrt{582}}{2\times 3}
Take the square root of 2328.
n=\frac{48±2\sqrt{582}}{2\times 3}
The opposite of -48 is 48.
n=\frac{48±2\sqrt{582}}{6}
Multiply 2 times 3.
n=\frac{2\sqrt{582}+48}{6}
Now solve the equation n=\frac{48±2\sqrt{582}}{6} when ± is plus. Add 48 to 2\sqrt{582}.
n=\frac{\sqrt{582}}{3}+8
Divide 48+2\sqrt{582} by 6.
n=\frac{48-2\sqrt{582}}{6}
Now solve the equation n=\frac{48±2\sqrt{582}}{6} when ± is minus. Subtract 2\sqrt{582} from 48.
n=-\frac{\sqrt{582}}{3}+8
Divide 48-2\sqrt{582} by 6.
n=\frac{\sqrt{582}}{3}+8 n=-\frac{\sqrt{582}}{3}+8
The equation is now solved.
3n^{2}-48n-2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3n^{2}-48n-2-\left(-2\right)=-\left(-2\right)
Add 2 to both sides of the equation.
3n^{2}-48n=-\left(-2\right)
Subtracting -2 from itself leaves 0.
3n^{2}-48n=2
Subtract -2 from 0.
\frac{3n^{2}-48n}{3}=\frac{2}{3}
Divide both sides by 3.
n^{2}+\left(-\frac{48}{3}\right)n=\frac{2}{3}
Dividing by 3 undoes the multiplication by 3.
n^{2}-16n=\frac{2}{3}
Divide -48 by 3.
n^{2}-16n+\left(-8\right)^{2}=\frac{2}{3}+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-16n+64=\frac{2}{3}+64
Square -8.
n^{2}-16n+64=\frac{194}{3}
Add \frac{2}{3} to 64.
\left(n-8\right)^{2}=\frac{194}{3}
Factor n^{2}-16n+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-8\right)^{2}}=\sqrt{\frac{194}{3}}
Take the square root of both sides of the equation.
n-8=\frac{\sqrt{582}}{3} n-8=-\frac{\sqrt{582}}{3}
Simplify.
n=\frac{\sqrt{582}}{3}+8 n=-\frac{\sqrt{582}}{3}+8
Add 8 to both sides of the equation.