Factor
3\left(f-2\right)\left(f+7\right)
Evaluate
3\left(f-2\right)\left(f+7\right)
Share
Copied to clipboard
3\left(f^{2}+5f-14\right)
Factor out 3.
a+b=5 ab=1\left(-14\right)=-14
Consider f^{2}+5f-14. Factor the expression by grouping. First, the expression needs to be rewritten as f^{2}+af+bf-14. To find a and b, set up a system to be solved.
-1,14 -2,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -14.
-1+14=13 -2+7=5
Calculate the sum for each pair.
a=-2 b=7
The solution is the pair that gives sum 5.
\left(f^{2}-2f\right)+\left(7f-14\right)
Rewrite f^{2}+5f-14 as \left(f^{2}-2f\right)+\left(7f-14\right).
f\left(f-2\right)+7\left(f-2\right)
Factor out f in the first and 7 in the second group.
\left(f-2\right)\left(f+7\right)
Factor out common term f-2 by using distributive property.
3\left(f-2\right)\left(f+7\right)
Rewrite the complete factored expression.
3f^{2}+15f-42=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
f=\frac{-15±\sqrt{15^{2}-4\times 3\left(-42\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
f=\frac{-15±\sqrt{225-4\times 3\left(-42\right)}}{2\times 3}
Square 15.
f=\frac{-15±\sqrt{225-12\left(-42\right)}}{2\times 3}
Multiply -4 times 3.
f=\frac{-15±\sqrt{225+504}}{2\times 3}
Multiply -12 times -42.
f=\frac{-15±\sqrt{729}}{2\times 3}
Add 225 to 504.
f=\frac{-15±27}{2\times 3}
Take the square root of 729.
f=\frac{-15±27}{6}
Multiply 2 times 3.
f=\frac{12}{6}
Now solve the equation f=\frac{-15±27}{6} when ± is plus. Add -15 to 27.
f=2
Divide 12 by 6.
f=-\frac{42}{6}
Now solve the equation f=\frac{-15±27}{6} when ± is minus. Subtract 27 from -15.
f=-7
Divide -42 by 6.
3f^{2}+15f-42=3\left(f-2\right)\left(f-\left(-7\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -7 for x_{2}.
3f^{2}+15f-42=3\left(f-2\right)\left(f+7\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}