Factor
3\left(d-14\right)\left(d-3\right)
Evaluate
3\left(d-14\right)\left(d-3\right)
Share
Copied to clipboard
3\left(d^{2}-17d+42\right)
Factor out 3.
a+b=-17 ab=1\times 42=42
Consider d^{2}-17d+42. Factor the expression by grouping. First, the expression needs to be rewritten as d^{2}+ad+bd+42. To find a and b, set up a system to be solved.
-1,-42 -2,-21 -3,-14 -6,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 42.
-1-42=-43 -2-21=-23 -3-14=-17 -6-7=-13
Calculate the sum for each pair.
a=-14 b=-3
The solution is the pair that gives sum -17.
\left(d^{2}-14d\right)+\left(-3d+42\right)
Rewrite d^{2}-17d+42 as \left(d^{2}-14d\right)+\left(-3d+42\right).
d\left(d-14\right)-3\left(d-14\right)
Factor out d in the first and -3 in the second group.
\left(d-14\right)\left(d-3\right)
Factor out common term d-14 by using distributive property.
3\left(d-14\right)\left(d-3\right)
Rewrite the complete factored expression.
3d^{2}-51d+126=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
d=\frac{-\left(-51\right)±\sqrt{\left(-51\right)^{2}-4\times 3\times 126}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-\left(-51\right)±\sqrt{2601-4\times 3\times 126}}{2\times 3}
Square -51.
d=\frac{-\left(-51\right)±\sqrt{2601-12\times 126}}{2\times 3}
Multiply -4 times 3.
d=\frac{-\left(-51\right)±\sqrt{2601-1512}}{2\times 3}
Multiply -12 times 126.
d=\frac{-\left(-51\right)±\sqrt{1089}}{2\times 3}
Add 2601 to -1512.
d=\frac{-\left(-51\right)±33}{2\times 3}
Take the square root of 1089.
d=\frac{51±33}{2\times 3}
The opposite of -51 is 51.
d=\frac{51±33}{6}
Multiply 2 times 3.
d=\frac{84}{6}
Now solve the equation d=\frac{51±33}{6} when ± is plus. Add 51 to 33.
d=14
Divide 84 by 6.
d=\frac{18}{6}
Now solve the equation d=\frac{51±33}{6} when ± is minus. Subtract 33 from 51.
d=3
Divide 18 by 6.
3d^{2}-51d+126=3\left(d-14\right)\left(d-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 14 for x_{1} and 3 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}