Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}-4x+4\right)=4-x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
3x^{2}-12x+12=4-x^{2}
Use the distributive property to multiply 3 by x^{2}-4x+4.
3x^{2}-12x+12-4=-x^{2}
Subtract 4 from both sides.
3x^{2}-12x+8=-x^{2}
Subtract 4 from 12 to get 8.
3x^{2}-12x+8+x^{2}=0
Add x^{2} to both sides.
4x^{2}-12x+8=0
Combine 3x^{2} and x^{2} to get 4x^{2}.
x^{2}-3x+2=0
Divide both sides by 4.
a+b=-3 ab=1\times 2=2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+2. To find a and b, set up a system to be solved.
a=-2 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(x^{2}-2x\right)+\left(-x+2\right)
Rewrite x^{2}-3x+2 as \left(x^{2}-2x\right)+\left(-x+2\right).
x\left(x-2\right)-\left(x-2\right)
Factor out x in the first and -1 in the second group.
\left(x-2\right)\left(x-1\right)
Factor out common term x-2 by using distributive property.
x=2 x=1
To find equation solutions, solve x-2=0 and x-1=0.
3\left(x^{2}-4x+4\right)=4-x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
3x^{2}-12x+12=4-x^{2}
Use the distributive property to multiply 3 by x^{2}-4x+4.
3x^{2}-12x+12-4=-x^{2}
Subtract 4 from both sides.
3x^{2}-12x+8=-x^{2}
Subtract 4 from 12 to get 8.
3x^{2}-12x+8+x^{2}=0
Add x^{2} to both sides.
4x^{2}-12x+8=0
Combine 3x^{2} and x^{2} to get 4x^{2}.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 8}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -12 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 8}}{2\times 4}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 8}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-12\right)±\sqrt{144-128}}{2\times 4}
Multiply -16 times 8.
x=\frac{-\left(-12\right)±\sqrt{16}}{2\times 4}
Add 144 to -128.
x=\frac{-\left(-12\right)±4}{2\times 4}
Take the square root of 16.
x=\frac{12±4}{2\times 4}
The opposite of -12 is 12.
x=\frac{12±4}{8}
Multiply 2 times 4.
x=\frac{16}{8}
Now solve the equation x=\frac{12±4}{8} when ± is plus. Add 12 to 4.
x=2
Divide 16 by 8.
x=\frac{8}{8}
Now solve the equation x=\frac{12±4}{8} when ± is minus. Subtract 4 from 12.
x=1
Divide 8 by 8.
x=2 x=1
The equation is now solved.
3\left(x^{2}-4x+4\right)=4-x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
3x^{2}-12x+12=4-x^{2}
Use the distributive property to multiply 3 by x^{2}-4x+4.
3x^{2}-12x+12+x^{2}=4
Add x^{2} to both sides.
4x^{2}-12x+12=4
Combine 3x^{2} and x^{2} to get 4x^{2}.
4x^{2}-12x=4-12
Subtract 12 from both sides.
4x^{2}-12x=-8
Subtract 12 from 4 to get -8.
\frac{4x^{2}-12x}{4}=-\frac{8}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{8}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-3x=-\frac{8}{4}
Divide -12 by 4.
x^{2}-3x=-2
Divide -8 by 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
Add -2 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
Simplify.
x=2 x=1
Add \frac{3}{2} to both sides of the equation.