Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

3\left(15+8i\right)-\frac{-3+6i}{4+i}
Calculate 4+i to the power of 2 and get 15+8i.
45+24i-\frac{-3+6i}{4+i}
Multiply 3 and 15+8i to get 45+24i.
45+24i-\frac{\left(-3+6i\right)\left(4-i\right)}{\left(4+i\right)\left(4-i\right)}
Multiply both numerator and denominator of \frac{-3+6i}{4+i} by the complex conjugate of the denominator, 4-i.
45+24i-\frac{-6+27i}{17}
Do the multiplications in \frac{\left(-3+6i\right)\left(4-i\right)}{\left(4+i\right)\left(4-i\right)}.
45+24i+\left(\frac{6}{17}-\frac{27}{17}i\right)
Divide -6+27i by 17 to get -\frac{6}{17}+\frac{27}{17}i.
\frac{771}{17}+\frac{381}{17}i
Add 45+24i and \frac{6}{17}-\frac{27}{17}i to get \frac{771}{17}+\frac{381}{17}i.
Re(3\left(15+8i\right)-\frac{-3+6i}{4+i})
Calculate 4+i to the power of 2 and get 15+8i.
Re(45+24i-\frac{-3+6i}{4+i})
Multiply 3 and 15+8i to get 45+24i.
Re(45+24i-\frac{\left(-3+6i\right)\left(4-i\right)}{\left(4+i\right)\left(4-i\right)})
Multiply both numerator and denominator of \frac{-3+6i}{4+i} by the complex conjugate of the denominator, 4-i.
Re(45+24i-\frac{-6+27i}{17})
Do the multiplications in \frac{\left(-3+6i\right)\left(4-i\right)}{\left(4+i\right)\left(4-i\right)}.
Re(45+24i+\left(\frac{6}{17}-\frac{27}{17}i\right))
Divide -6+27i by 17 to get -\frac{6}{17}+\frac{27}{17}i.
Re(\frac{771}{17}+\frac{381}{17}i)
Add 45+24i and \frac{6}{17}-\frac{27}{17}i to get \frac{771}{17}+\frac{381}{17}i.
\frac{771}{17}
The real part of \frac{771}{17}+\frac{381}{17}i is \frac{771}{17}.