Evaluate
\frac{43}{27}\approx 1.592592593
Factor
\frac{43}{3 ^ {3}} = 1\frac{16}{27} = 1.5925925925925926
Share
Copied to clipboard
3\times \frac{1}{81}-4\times \left(\frac{1}{3}\right)^{2}+2
Calculate \frac{1}{3} to the power of 4 and get \frac{1}{81}.
\frac{3}{81}-4\times \left(\frac{1}{3}\right)^{2}+2
Multiply 3 and \frac{1}{81} to get \frac{3}{81}.
\frac{1}{27}-4\times \left(\frac{1}{3}\right)^{2}+2
Reduce the fraction \frac{3}{81} to lowest terms by extracting and canceling out 3.
\frac{1}{27}-4\times \frac{1}{9}+2
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{27}-\frac{4}{9}+2
Multiply 4 and \frac{1}{9} to get \frac{4}{9}.
\frac{1}{27}-\frac{12}{27}+2
Least common multiple of 27 and 9 is 27. Convert \frac{1}{27} and \frac{4}{9} to fractions with denominator 27.
\frac{1-12}{27}+2
Since \frac{1}{27} and \frac{12}{27} have the same denominator, subtract them by subtracting their numerators.
-\frac{11}{27}+2
Subtract 12 from 1 to get -11.
-\frac{11}{27}+\frac{54}{27}
Convert 2 to fraction \frac{54}{27}.
\frac{-11+54}{27}
Since -\frac{11}{27} and \frac{54}{27} have the same denominator, add them by adding their numerators.
\frac{43}{27}
Add -11 and 54 to get 43.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}