Evaluate
\frac{755-15\sqrt{2505}}{2}\approx 2.125187313
Expand
\frac{755 - 15 \sqrt{2505}}{2} = 2.125187312734056
Share
Copied to clipboard
3\left(\frac{\sqrt{2505}}{6}-\frac{15\times 3}{6}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 2 is 6. Multiply \frac{15}{2} times \frac{3}{3}.
3\times \left(\frac{\sqrt{2505}-15\times 3}{6}\right)^{2}
Since \frac{\sqrt{2505}}{6} and \frac{15\times 3}{6} have the same denominator, subtract them by subtracting their numerators.
3\times \left(\frac{\sqrt{2505}-45}{6}\right)^{2}
Do the multiplications in \sqrt{2505}-15\times 3.
3\times \frac{\left(\sqrt{2505}-45\right)^{2}}{6^{2}}
To raise \frac{\sqrt{2505}-45}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{3\left(\sqrt{2505}-45\right)^{2}}{6^{2}}
Express 3\times \frac{\left(\sqrt{2505}-45\right)^{2}}{6^{2}} as a single fraction.
\frac{3\left(\left(\sqrt{2505}\right)^{2}-90\sqrt{2505}+2025\right)}{6^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2505}-45\right)^{2}.
\frac{3\left(2505-90\sqrt{2505}+2025\right)}{6^{2}}
The square of \sqrt{2505} is 2505.
\frac{3\left(4530-90\sqrt{2505}\right)}{6^{2}}
Add 2505 and 2025 to get 4530.
\frac{3\left(4530-90\sqrt{2505}\right)}{36}
Calculate 6 to the power of 2 and get 36.
\frac{1}{12}\left(4530-90\sqrt{2505}\right)
Divide 3\left(4530-90\sqrt{2505}\right) by 36 to get \frac{1}{12}\left(4530-90\sqrt{2505}\right).
\frac{755}{2}-\frac{15}{2}\sqrt{2505}
Use the distributive property to multiply \frac{1}{12} by 4530-90\sqrt{2505}.
3\left(\frac{\sqrt{2505}}{6}-\frac{15\times 3}{6}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 2 is 6. Multiply \frac{15}{2} times \frac{3}{3}.
3\times \left(\frac{\sqrt{2505}-15\times 3}{6}\right)^{2}
Since \frac{\sqrt{2505}}{6} and \frac{15\times 3}{6} have the same denominator, subtract them by subtracting their numerators.
3\times \left(\frac{\sqrt{2505}-45}{6}\right)^{2}
Do the multiplications in \sqrt{2505}-15\times 3.
3\times \frac{\left(\sqrt{2505}-45\right)^{2}}{6^{2}}
To raise \frac{\sqrt{2505}-45}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{3\left(\sqrt{2505}-45\right)^{2}}{6^{2}}
Express 3\times \frac{\left(\sqrt{2505}-45\right)^{2}}{6^{2}} as a single fraction.
\frac{3\left(\left(\sqrt{2505}\right)^{2}-90\sqrt{2505}+2025\right)}{6^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2505}-45\right)^{2}.
\frac{3\left(2505-90\sqrt{2505}+2025\right)}{6^{2}}
The square of \sqrt{2505} is 2505.
\frac{3\left(4530-90\sqrt{2505}\right)}{6^{2}}
Add 2505 and 2025 to get 4530.
\frac{3\left(4530-90\sqrt{2505}\right)}{36}
Calculate 6 to the power of 2 and get 36.
\frac{1}{12}\left(4530-90\sqrt{2505}\right)
Divide 3\left(4530-90\sqrt{2505}\right) by 36 to get \frac{1}{12}\left(4530-90\sqrt{2505}\right).
\frac{755}{2}-\frac{15}{2}\sqrt{2505}
Use the distributive property to multiply \frac{1}{12} by 4530-90\sqrt{2505}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}