Evaluate
\frac{2}{3}\approx 0.666666667
Factor
\frac{2}{3} = 0.6666666666666666
Share
Copied to clipboard
3\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+\frac{\sqrt{\frac{2\times 9+7}{9}}}{\sqrt[3]{-8}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
3\times \left(\frac{\sqrt{2}}{2}\right)^{2}+\frac{\sqrt{\frac{2\times 9+7}{9}}}{\sqrt[3]{-8}}
The square of \sqrt{2} is 2.
3\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\sqrt{\frac{2\times 9+7}{9}}}{\sqrt[3]{-8}}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{3\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\sqrt{\frac{2\times 9+7}{9}}}{\sqrt[3]{-8}}
Express 3\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} as a single fraction.
\frac{3\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\sqrt{\frac{18+7}{9}}}{\sqrt[3]{-8}}
Multiply 2 and 9 to get 18.
\frac{3\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\sqrt{\frac{25}{9}}}{\sqrt[3]{-8}}
Add 18 and 7 to get 25.
\frac{3\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\frac{5}{3}}{\sqrt[3]{-8}}
Rewrite the square root of the division \frac{25}{9} as the division of square roots \frac{\sqrt{25}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\frac{3\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\frac{5}{3}}{-2}
Calculate \sqrt[3]{-8} and get -2.
\frac{3\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{5}{3\left(-2\right)}
Express \frac{\frac{5}{3}}{-2} as a single fraction.
\frac{3\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{5}{-6}
Multiply 3 and -2 to get -6.
\frac{3\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{5}{6}
Fraction \frac{5}{-6} can be rewritten as -\frac{5}{6} by extracting the negative sign.
\frac{3\times 3\left(\sqrt{2}\right)^{2}}{12}-\frac{5\times 2}{12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2^{2} and 6 is 12. Multiply \frac{3\left(\sqrt{2}\right)^{2}}{2^{2}} times \frac{3}{3}. Multiply \frac{5}{6} times \frac{2}{2}.
\frac{3\times 3\left(\sqrt{2}\right)^{2}-5\times 2}{12}
Since \frac{3\times 3\left(\sqrt{2}\right)^{2}}{12} and \frac{5\times 2}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{3\times 2}{2^{2}}-\frac{5}{6}
The square of \sqrt{2} is 2.
\frac{6}{2^{2}}-\frac{5}{6}
Multiply 3 and 2 to get 6.
\frac{6}{4}-\frac{5}{6}
Calculate 2 to the power of 2 and get 4.
\frac{3}{2}-\frac{5}{6}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{2}{3}
Subtract \frac{5}{6} from \frac{3}{2} to get \frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}