Evaluate
\frac{191}{72}\approx 2.652777778
Factor
\frac{191}{2 ^ {3} \cdot 3 ^ {2}} = 2\frac{47}{72} = 2.6527777777777777
Share
Copied to clipboard
\frac{3\times 3}{4}+\frac{2}{9}\times \frac{3}{4}\times \frac{29}{12}
Express 3\times \frac{3}{4} as a single fraction.
\frac{9}{4}+\frac{2}{9}\times \frac{3}{4}\times \frac{29}{12}
Multiply 3 and 3 to get 9.
\frac{9}{4}+\frac{2\times 3}{9\times 4}\times \frac{29}{12}
Multiply \frac{2}{9} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{4}+\frac{6}{36}\times \frac{29}{12}
Do the multiplications in the fraction \frac{2\times 3}{9\times 4}.
\frac{9}{4}+\frac{1}{6}\times \frac{29}{12}
Reduce the fraction \frac{6}{36} to lowest terms by extracting and canceling out 6.
\frac{9}{4}+\frac{1\times 29}{6\times 12}
Multiply \frac{1}{6} times \frac{29}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{4}+\frac{29}{72}
Do the multiplications in the fraction \frac{1\times 29}{6\times 12}.
\frac{162}{72}+\frac{29}{72}
Least common multiple of 4 and 72 is 72. Convert \frac{9}{4} and \frac{29}{72} to fractions with denominator 72.
\frac{162+29}{72}
Since \frac{162}{72} and \frac{29}{72} have the same denominator, add them by adding their numerators.
\frac{191}{72}
Add 162 and 29 to get 191.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}