Evaluate
\frac{n\left(n+1\right)\left(2n+5\right)}{2}
Expand
n^{3}+\frac{7n^{2}}{2}+\frac{5n}{2}
Share
Copied to clipboard
\frac{3}{6}n\left(n+1\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Multiply 3 and \frac{1}{6} to get \frac{3}{6}.
\frac{1}{2}n\left(n+1\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\left(\frac{1}{2}nn+\frac{1}{2}n\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Use the distributive property to multiply \frac{1}{2}n by n+1.
\left(\frac{1}{2}n^{2}+\frac{1}{2}n\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Multiply n and n to get n^{2}.
\frac{1}{2}n^{2}\times 2n+\frac{1}{2}n^{2}+\frac{1}{2}n\times 2n+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Apply the distributive property by multiplying each term of \frac{1}{2}n^{2}+\frac{1}{2}n by each term of 2n+1.
\frac{1}{2}n^{3}\times 2+\frac{1}{2}n^{2}+\frac{1}{2}n\times 2n+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{2}n^{3}\times 2+\frac{1}{2}n^{2}+\frac{1}{2}n^{2}\times 2+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Multiply n and n to get n^{2}.
n^{3}+\frac{1}{2}n^{2}+\frac{1}{2}n^{2}\times 2+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Cancel out 2 and 2.
n^{3}+\frac{1}{2}n^{2}+n^{2}+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Cancel out 2 and 2.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Combine \frac{1}{2}n^{2} and n^{2} to get \frac{3}{2}n^{2}.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+\frac{4}{2}n\left(n+1\right)
Multiply 4 and \frac{1}{2} to get \frac{4}{2}.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+2n\left(n+1\right)
Divide 4 by 2 to get 2.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+2n^{2}+2n
Use the distributive property to multiply 2n by n+1.
n^{3}+\frac{7}{2}n^{2}+\frac{1}{2}n+2n
Combine \frac{3}{2}n^{2} and 2n^{2} to get \frac{7}{2}n^{2}.
n^{3}+\frac{7}{2}n^{2}+\frac{5}{2}n
Combine \frac{1}{2}n and 2n to get \frac{5}{2}n.
\frac{3}{6}n\left(n+1\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Multiply 3 and \frac{1}{6} to get \frac{3}{6}.
\frac{1}{2}n\left(n+1\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\left(\frac{1}{2}nn+\frac{1}{2}n\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Use the distributive property to multiply \frac{1}{2}n by n+1.
\left(\frac{1}{2}n^{2}+\frac{1}{2}n\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Multiply n and n to get n^{2}.
\frac{1}{2}n^{2}\times 2n+\frac{1}{2}n^{2}+\frac{1}{2}n\times 2n+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Apply the distributive property by multiplying each term of \frac{1}{2}n^{2}+\frac{1}{2}n by each term of 2n+1.
\frac{1}{2}n^{3}\times 2+\frac{1}{2}n^{2}+\frac{1}{2}n\times 2n+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{2}n^{3}\times 2+\frac{1}{2}n^{2}+\frac{1}{2}n^{2}\times 2+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Multiply n and n to get n^{2}.
n^{3}+\frac{1}{2}n^{2}+\frac{1}{2}n^{2}\times 2+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Cancel out 2 and 2.
n^{3}+\frac{1}{2}n^{2}+n^{2}+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Cancel out 2 and 2.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Combine \frac{1}{2}n^{2} and n^{2} to get \frac{3}{2}n^{2}.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+\frac{4}{2}n\left(n+1\right)
Multiply 4 and \frac{1}{2} to get \frac{4}{2}.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+2n\left(n+1\right)
Divide 4 by 2 to get 2.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+2n^{2}+2n
Use the distributive property to multiply 2n by n+1.
n^{3}+\frac{7}{2}n^{2}+\frac{1}{2}n+2n
Combine \frac{3}{2}n^{2} and 2n^{2} to get \frac{7}{2}n^{2}.
n^{3}+\frac{7}{2}n^{2}+\frac{5}{2}n
Combine \frac{1}{2}n and 2n to get \frac{5}{2}n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}