Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{6}n\left(n+1\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Multiply 3 and \frac{1}{6} to get \frac{3}{6}.
\frac{1}{2}n\left(n+1\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\left(\frac{1}{2}nn+\frac{1}{2}n\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Use the distributive property to multiply \frac{1}{2}n by n+1.
\left(\frac{1}{2}n^{2}+\frac{1}{2}n\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Multiply n and n to get n^{2}.
\frac{1}{2}n^{2}\times 2n+\frac{1}{2}n^{2}+\frac{1}{2}n\times 2n+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Apply the distributive property by multiplying each term of \frac{1}{2}n^{2}+\frac{1}{2}n by each term of 2n+1.
\frac{1}{2}n^{3}\times 2+\frac{1}{2}n^{2}+\frac{1}{2}n\times 2n+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{2}n^{3}\times 2+\frac{1}{2}n^{2}+\frac{1}{2}n^{2}\times 2+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Multiply n and n to get n^{2}.
n^{3}+\frac{1}{2}n^{2}+\frac{1}{2}n^{2}\times 2+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Cancel out 2 and 2.
n^{3}+\frac{1}{2}n^{2}+n^{2}+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Cancel out 2 and 2.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Combine \frac{1}{2}n^{2} and n^{2} to get \frac{3}{2}n^{2}.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+\frac{4}{2}n\left(n+1\right)
Multiply 4 and \frac{1}{2} to get \frac{4}{2}.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+2n\left(n+1\right)
Divide 4 by 2 to get 2.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+2n^{2}+2n
Use the distributive property to multiply 2n by n+1.
n^{3}+\frac{7}{2}n^{2}+\frac{1}{2}n+2n
Combine \frac{3}{2}n^{2} and 2n^{2} to get \frac{7}{2}n^{2}.
n^{3}+\frac{7}{2}n^{2}+\frac{5}{2}n
Combine \frac{1}{2}n and 2n to get \frac{5}{2}n.
\frac{3}{6}n\left(n+1\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Multiply 3 and \frac{1}{6} to get \frac{3}{6}.
\frac{1}{2}n\left(n+1\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\left(\frac{1}{2}nn+\frac{1}{2}n\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Use the distributive property to multiply \frac{1}{2}n by n+1.
\left(\frac{1}{2}n^{2}+\frac{1}{2}n\right)\left(2n+1\right)+4\times \frac{1}{2}n\left(n+1\right)
Multiply n and n to get n^{2}.
\frac{1}{2}n^{2}\times 2n+\frac{1}{2}n^{2}+\frac{1}{2}n\times 2n+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Apply the distributive property by multiplying each term of \frac{1}{2}n^{2}+\frac{1}{2}n by each term of 2n+1.
\frac{1}{2}n^{3}\times 2+\frac{1}{2}n^{2}+\frac{1}{2}n\times 2n+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{2}n^{3}\times 2+\frac{1}{2}n^{2}+\frac{1}{2}n^{2}\times 2+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Multiply n and n to get n^{2}.
n^{3}+\frac{1}{2}n^{2}+\frac{1}{2}n^{2}\times 2+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Cancel out 2 and 2.
n^{3}+\frac{1}{2}n^{2}+n^{2}+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Cancel out 2 and 2.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+4\times \frac{1}{2}n\left(n+1\right)
Combine \frac{1}{2}n^{2} and n^{2} to get \frac{3}{2}n^{2}.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+\frac{4}{2}n\left(n+1\right)
Multiply 4 and \frac{1}{2} to get \frac{4}{2}.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+2n\left(n+1\right)
Divide 4 by 2 to get 2.
n^{3}+\frac{3}{2}n^{2}+\frac{1}{2}n+2n^{2}+2n
Use the distributive property to multiply 2n by n+1.
n^{3}+\frac{7}{2}n^{2}+\frac{1}{2}n+2n
Combine \frac{3}{2}n^{2} and 2n^{2} to get \frac{7}{2}n^{2}.
n^{3}+\frac{7}{2}n^{2}+\frac{5}{2}n
Combine \frac{1}{2}n and 2n to get \frac{5}{2}n.