Verify
false
Share
Copied to clipboard
\frac{3}{2}\left(\frac{1}{2}-\frac{12}{3}\right)=\frac{27}{8}
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{3}{2}\left(\frac{1}{2}-4\right)=\frac{27}{8}
Divide 12 by 3 to get 4.
\frac{3}{2}\left(\frac{1}{2}-\frac{8}{2}\right)=\frac{27}{8}
Convert 4 to fraction \frac{8}{2}.
\frac{3}{2}\times \frac{1-8}{2}=\frac{27}{8}
Since \frac{1}{2} and \frac{8}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{2}\left(-\frac{7}{2}\right)=\frac{27}{8}
Subtract 8 from 1 to get -7.
\frac{3\left(-7\right)}{2\times 2}=\frac{27}{8}
Multiply \frac{3}{2} times -\frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-21}{4}=\frac{27}{8}
Do the multiplications in the fraction \frac{3\left(-7\right)}{2\times 2}.
-\frac{21}{4}=\frac{27}{8}
Fraction \frac{-21}{4} can be rewritten as -\frac{21}{4} by extracting the negative sign.
-\frac{42}{8}=\frac{27}{8}
Least common multiple of 4 and 8 is 8. Convert -\frac{21}{4} and \frac{27}{8} to fractions with denominator 8.
\text{false}
Compare -\frac{42}{8} and \frac{27}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}