Solve for x
x=\frac{1873y}{14400}
Solve for y
y=\frac{14400x}{1873}
Graph
Share
Copied to clipboard
9x=9.365y-63x
Multiply 3 and 3 to get 9.
9x+63x=9.365y
Add 63x to both sides.
72x=9.365y
Combine 9x and 63x to get 72x.
72x=\frac{1873y}{200}
The equation is in standard form.
\frac{72x}{72}=\frac{1873y}{72\times 200}
Divide both sides by 72.
x=\frac{1873y}{72\times 200}
Dividing by 72 undoes the multiplication by 72.
x=\frac{1873y}{14400}
Divide \frac{1873y}{200} by 72.
9x=9.365y-63x
Multiply 3 and 3 to get 9.
9.365y-63x=9x
Swap sides so that all variable terms are on the left hand side.
9.365y=9x+63x
Add 63x to both sides.
9.365y=72x
Combine 9x and 63x to get 72x.
\frac{9.365y}{9.365}=\frac{72x}{9.365}
Divide both sides of the equation by 9.365, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{72x}{9.365}
Dividing by 9.365 undoes the multiplication by 9.365.
y=\frac{14400x}{1873}
Divide 72x by 9.365 by multiplying 72x by the reciprocal of 9.365.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}