Evaluate
\frac{1472}{15}\approx 98.133333333
Factor
\frac{2 ^ {6} \cdot 23}{3 \cdot 5} = 98\frac{2}{15} = 98.13333333333334
Share
Copied to clipboard
3\times 64+16\times 4+4^{5}\times \frac{1}{5}-\frac{3}{2}\times 4^{4}+12\times 16-\frac{8}{3}\times 4^{3}
Calculate 4 to the power of 3 and get 64.
192+16\times 4+4^{5}\times \frac{1}{5}-\frac{3}{2}\times 4^{4}+12\times 16-\frac{8}{3}\times 4^{3}
Multiply 3 and 64 to get 192.
192+64+4^{5}\times \frac{1}{5}-\frac{3}{2}\times 4^{4}+12\times 16-\frac{8}{3}\times 4^{3}
Multiply 16 and 4 to get 64.
256+4^{5}\times \frac{1}{5}-\frac{3}{2}\times 4^{4}+12\times 16-\frac{8}{3}\times 4^{3}
Add 192 and 64 to get 256.
256+1024\times \frac{1}{5}-\frac{3}{2}\times 4^{4}+12\times 16-\frac{8}{3}\times 4^{3}
Calculate 4 to the power of 5 and get 1024.
256+\frac{1024}{5}-\frac{3}{2}\times 4^{4}+12\times 16-\frac{8}{3}\times 4^{3}
Multiply 1024 and \frac{1}{5} to get \frac{1024}{5}.
\frac{1280}{5}+\frac{1024}{5}-\frac{3}{2}\times 4^{4}+12\times 16-\frac{8}{3}\times 4^{3}
Convert 256 to fraction \frac{1280}{5}.
\frac{1280+1024}{5}-\frac{3}{2}\times 4^{4}+12\times 16-\frac{8}{3}\times 4^{3}
Since \frac{1280}{5} and \frac{1024}{5} have the same denominator, add them by adding their numerators.
\frac{2304}{5}-\frac{3}{2}\times 4^{4}+12\times 16-\frac{8}{3}\times 4^{3}
Add 1280 and 1024 to get 2304.
\frac{2304}{5}-\frac{3}{2}\times 256+12\times 16-\frac{8}{3}\times 4^{3}
Calculate 4 to the power of 4 and get 256.
\frac{2304}{5}-\frac{3\times 256}{2}+12\times 16-\frac{8}{3}\times 4^{3}
Express \frac{3}{2}\times 256 as a single fraction.
\frac{2304}{5}-\frac{768}{2}+12\times 16-\frac{8}{3}\times 4^{3}
Multiply 3 and 256 to get 768.
\frac{2304}{5}-384+12\times 16-\frac{8}{3}\times 4^{3}
Divide 768 by 2 to get 384.
\frac{2304}{5}-\frac{1920}{5}+12\times 16-\frac{8}{3}\times 4^{3}
Convert 384 to fraction \frac{1920}{5}.
\frac{2304-1920}{5}+12\times 16-\frac{8}{3}\times 4^{3}
Since \frac{2304}{5} and \frac{1920}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{384}{5}+12\times 16-\frac{8}{3}\times 4^{3}
Subtract 1920 from 2304 to get 384.
\frac{384}{5}+192-\frac{8}{3}\times 4^{3}
Multiply 12 and 16 to get 192.
\frac{384}{5}+\frac{960}{5}-\frac{8}{3}\times 4^{3}
Convert 192 to fraction \frac{960}{5}.
\frac{384+960}{5}-\frac{8}{3}\times 4^{3}
Since \frac{384}{5} and \frac{960}{5} have the same denominator, add them by adding their numerators.
\frac{1344}{5}-\frac{8}{3}\times 4^{3}
Add 384 and 960 to get 1344.
\frac{1344}{5}-\frac{8}{3}\times 64
Calculate 4 to the power of 3 and get 64.
\frac{1344}{5}-\frac{8\times 64}{3}
Express \frac{8}{3}\times 64 as a single fraction.
\frac{1344}{5}-\frac{512}{3}
Multiply 8 and 64 to get 512.
\frac{4032}{15}-\frac{2560}{15}
Least common multiple of 5 and 3 is 15. Convert \frac{1344}{5} and \frac{512}{3} to fractions with denominator 15.
\frac{4032-2560}{15}
Since \frac{4032}{15} and \frac{2560}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{1472}{15}
Subtract 2560 from 4032 to get 1472.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}