Evaluate
\frac{\sqrt{10}}{50}\approx 0.063245553
Share
Copied to clipboard
3\sqrt{\frac{6}{12960}\times 0.96}
Expand \frac{0.6}{1296} by multiplying both numerator and the denominator by 10.
3\sqrt{\frac{1}{2160}\times 0.96}
Reduce the fraction \frac{6}{12960} to lowest terms by extracting and canceling out 6.
3\sqrt{\frac{1}{2160}\times \frac{24}{25}}
Convert decimal number 0.96 to fraction \frac{96}{100}. Reduce the fraction \frac{96}{100} to lowest terms by extracting and canceling out 4.
3\sqrt{\frac{1\times 24}{2160\times 25}}
Multiply \frac{1}{2160} times \frac{24}{25} by multiplying numerator times numerator and denominator times denominator.
3\sqrt{\frac{24}{54000}}
Do the multiplications in the fraction \frac{1\times 24}{2160\times 25}.
3\sqrt{\frac{1}{2250}}
Reduce the fraction \frac{24}{54000} to lowest terms by extracting and canceling out 24.
3\times \frac{\sqrt{1}}{\sqrt{2250}}
Rewrite the square root of the division \sqrt{\frac{1}{2250}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2250}}.
3\times \frac{1}{\sqrt{2250}}
Calculate the square root of 1 and get 1.
3\times \frac{1}{15\sqrt{10}}
Factor 2250=15^{2}\times 10. Rewrite the square root of the product \sqrt{15^{2}\times 10} as the product of square roots \sqrt{15^{2}}\sqrt{10}. Take the square root of 15^{2}.
3\times \frac{\sqrt{10}}{15\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{1}{15\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
3\times \frac{\sqrt{10}}{15\times 10}
The square of \sqrt{10} is 10.
3\times \frac{\sqrt{10}}{150}
Multiply 15 and 10 to get 150.
\frac{\sqrt{10}}{50}
Cancel out 150, the greatest common factor in 3 and 150.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}