Solve for y
y = \frac{93}{20} = 4\frac{13}{20} = 4.65
Graph
Share
Copied to clipboard
\frac{3\times 9}{5}+4y=24
Express 3\times \frac{9}{5} as a single fraction.
\frac{27}{5}+4y=24
Multiply 3 and 9 to get 27.
4y=24-\frac{27}{5}
Subtract \frac{27}{5} from both sides.
4y=\frac{120}{5}-\frac{27}{5}
Convert 24 to fraction \frac{120}{5}.
4y=\frac{120-27}{5}
Since \frac{120}{5} and \frac{27}{5} have the same denominator, subtract them by subtracting their numerators.
4y=\frac{93}{5}
Subtract 27 from 120 to get 93.
y=\frac{\frac{93}{5}}{4}
Divide both sides by 4.
y=\frac{93}{5\times 4}
Express \frac{\frac{93}{5}}{4} as a single fraction.
y=\frac{93}{20}
Multiply 5 and 4 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}