Solve for x
x=-\frac{1}{5}=-0.2
Graph
Share
Copied to clipboard
\frac{3\times 13}{15}-2x=3
Express 3\times \frac{13}{15} as a single fraction.
\frac{39}{15}-2x=3
Multiply 3 and 13 to get 39.
\frac{13}{5}-2x=3
Reduce the fraction \frac{39}{15} to lowest terms by extracting and canceling out 3.
-2x=3-\frac{13}{5}
Subtract \frac{13}{5} from both sides.
-2x=\frac{15}{5}-\frac{13}{5}
Convert 3 to fraction \frac{15}{5}.
-2x=\frac{15-13}{5}
Since \frac{15}{5} and \frac{13}{5} have the same denominator, subtract them by subtracting their numerators.
-2x=\frac{2}{5}
Subtract 13 from 15 to get 2.
x=\frac{\frac{2}{5}}{-2}
Divide both sides by -2.
x=\frac{2}{5\left(-2\right)}
Express \frac{\frac{2}{5}}{-2} as a single fraction.
x=\frac{2}{-10}
Multiply 5 and -2 to get -10.
x=-\frac{1}{5}
Reduce the fraction \frac{2}{-10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}