Evaluate
-x^{2}+\frac{17x}{2}+\frac{39}{2}
Expand
-x^{2}+\frac{17x}{2}+\frac{39}{2}
Graph
Share
Copied to clipboard
\frac{3}{6}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Multiply 3 and \frac{1}{6} to get \frac{3}{6}.
\frac{1}{2}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{2}\left(\left(6+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Multiply 3 and 2 to get 6.
\frac{1}{2}\left(12+2x+\left(2x+3\right)\left(9-x\right)\right)
Use the distributive property to multiply 6+x by 2.
\frac{1}{2}\left(12+2x+18x-2x^{2}+27-3x\right)
Apply the distributive property by multiplying each term of 2x+3 by each term of 9-x.
\frac{1}{2}\left(12+2x+15x-2x^{2}+27\right)
Combine 18x and -3x to get 15x.
\frac{1}{2}\left(12+17x-2x^{2}+27\right)
Combine 2x and 15x to get 17x.
\frac{1}{2}\left(39+17x-2x^{2}\right)
Add 12 and 27 to get 39.
\frac{1}{2}\times 39+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
Use the distributive property to multiply \frac{1}{2} by 39+17x-2x^{2}.
\frac{39}{2}+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
Multiply \frac{1}{2} and 39 to get \frac{39}{2}.
\frac{39}{2}+\frac{17}{2}x+\frac{1}{2}\left(-2\right)x^{2}
Multiply \frac{1}{2} and 17 to get \frac{17}{2}.
\frac{39}{2}+\frac{17}{2}x+\frac{-2}{2}x^{2}
Multiply \frac{1}{2} and -2 to get \frac{-2}{2}.
\frac{39}{2}+\frac{17}{2}x-x^{2}
Divide -2 by 2 to get -1.
\frac{3}{6}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Multiply 3 and \frac{1}{6} to get \frac{3}{6}.
\frac{1}{2}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{2}\left(\left(6+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Multiply 3 and 2 to get 6.
\frac{1}{2}\left(12+2x+\left(2x+3\right)\left(9-x\right)\right)
Use the distributive property to multiply 6+x by 2.
\frac{1}{2}\left(12+2x+18x-2x^{2}+27-3x\right)
Apply the distributive property by multiplying each term of 2x+3 by each term of 9-x.
\frac{1}{2}\left(12+2x+15x-2x^{2}+27\right)
Combine 18x and -3x to get 15x.
\frac{1}{2}\left(12+17x-2x^{2}+27\right)
Combine 2x and 15x to get 17x.
\frac{1}{2}\left(39+17x-2x^{2}\right)
Add 12 and 27 to get 39.
\frac{1}{2}\times 39+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
Use the distributive property to multiply \frac{1}{2} by 39+17x-2x^{2}.
\frac{39}{2}+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
Multiply \frac{1}{2} and 39 to get \frac{39}{2}.
\frac{39}{2}+\frac{17}{2}x+\frac{1}{2}\left(-2\right)x^{2}
Multiply \frac{1}{2} and 17 to get \frac{17}{2}.
\frac{39}{2}+\frac{17}{2}x+\frac{-2}{2}x^{2}
Multiply \frac{1}{2} and -2 to get \frac{-2}{2}.
\frac{39}{2}+\frac{17}{2}x-x^{2}
Divide -2 by 2 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}