Evaluate
\frac{13}{2}=6.5
Share
Copied to clipboard
3\times \left(\frac{\sqrt{3}}{3}\right)^{2}+4\tan(45)+\cos(30)\cot(30)
Get the value of \tan(30) from trigonometric values table.
3\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}}+4\tan(45)+\cos(30)\cot(30)
To raise \frac{\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{3\left(\sqrt{3}\right)^{2}}{3^{2}}+4\tan(45)+\cos(30)\cot(30)
Express 3\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} as a single fraction.
\frac{\left(\sqrt{3}\right)^{2}}{3}+4\tan(45)+\cos(30)\cot(30)
Cancel out 3 in both numerator and denominator.
\frac{\left(\sqrt{3}\right)^{2}}{3}+4\times 1+\cos(30)\cot(30)
Get the value of \tan(45) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}}{3}+4+\cos(30)\cot(30)
Multiply 4 and 1 to get 4.
\frac{\left(\sqrt{3}\right)^{2}}{3}+4+\frac{\sqrt{3}}{2}\cot(30)
Get the value of \cos(30) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}}{3}+4+\frac{\sqrt{3}}{2}\sqrt{3}
Get the value of \cot(30) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}}{3}+4+\frac{\sqrt{3}\sqrt{3}}{2}
Express \frac{\sqrt{3}}{2}\sqrt{3} as a single fraction.
\frac{\left(\sqrt{3}\right)^{2}}{3}+\frac{4\times 3}{3}+\frac{\sqrt{3}\sqrt{3}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{3}{3}.
\frac{\left(\sqrt{3}\right)^{2}+4\times 3}{3}+\frac{\sqrt{3}\sqrt{3}}{2}
Since \frac{\left(\sqrt{3}\right)^{2}}{3} and \frac{4\times 3}{3} have the same denominator, add them by adding their numerators.
\frac{2\left(\sqrt{3}\right)^{2}}{6}+4+\frac{3\sqrt{3}\sqrt{3}}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{\left(\sqrt{3}\right)^{2}}{3} times \frac{2}{2}. Multiply \frac{\sqrt{3}\sqrt{3}}{2} times \frac{3}{3}.
\frac{2\left(\sqrt{3}\right)^{2}+3\sqrt{3}\sqrt{3}}{6}+4
Since \frac{2\left(\sqrt{3}\right)^{2}}{6} and \frac{3\sqrt{3}\sqrt{3}}{6} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{3}\right)^{2}}{3}+\frac{4\times 2}{2}+\frac{\sqrt{3}\sqrt{3}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{2}{2}.
\frac{\left(\sqrt{3}\right)^{2}}{3}+\frac{4\times 2+\sqrt{3}\sqrt{3}}{2}
Since \frac{4\times 2}{2} and \frac{\sqrt{3}\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{3}\right)^{2}}{3}+\frac{8+3}{2}
Do the multiplications in 4\times 2+\sqrt{3}\sqrt{3}.
\frac{\left(\sqrt{3}\right)^{2}}{3}+\frac{11}{2}
Do the calculations in 8+3.
\frac{3}{3}+\frac{11}{2}
The square of \sqrt{3} is 3.
1+\frac{11}{2}
Divide 3 by 3 to get 1.
\frac{13}{2}
Add 1 and \frac{11}{2} to get \frac{13}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}