Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\times 4\sqrt{3}-9\sqrt{\frac{1}{3}}+3\sqrt{18}-4\sqrt{\frac{1}{8}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
12\sqrt{3}-9\sqrt{\frac{1}{3}}+3\sqrt{18}-4\sqrt{\frac{1}{8}}
Multiply 3 and 4 to get 12.
12\sqrt{3}-9\times \frac{\sqrt{1}}{\sqrt{3}}+3\sqrt{18}-4\sqrt{\frac{1}{8}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
12\sqrt{3}-9\times \frac{1}{\sqrt{3}}+3\sqrt{18}-4\sqrt{\frac{1}{8}}
Calculate the square root of 1 and get 1.
12\sqrt{3}-9\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+3\sqrt{18}-4\sqrt{\frac{1}{8}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
12\sqrt{3}-9\times \frac{\sqrt{3}}{3}+3\sqrt{18}-4\sqrt{\frac{1}{8}}
The square of \sqrt{3} is 3.
12\sqrt{3}-3\sqrt{3}+3\sqrt{18}-4\sqrt{\frac{1}{8}}
Cancel out 3, the greatest common factor in 9 and 3.
9\sqrt{3}+3\sqrt{18}-4\sqrt{\frac{1}{8}}
Combine 12\sqrt{3} and -3\sqrt{3} to get 9\sqrt{3}.
9\sqrt{3}+3\times 3\sqrt{2}-4\sqrt{\frac{1}{8}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
9\sqrt{3}+9\sqrt{2}-4\sqrt{\frac{1}{8}}
Multiply 3 and 3 to get 9.
9\sqrt{3}+9\sqrt{2}-4\times \frac{\sqrt{1}}{\sqrt{8}}
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
9\sqrt{3}+9\sqrt{2}-4\times \frac{1}{\sqrt{8}}
Calculate the square root of 1 and get 1.
9\sqrt{3}+9\sqrt{2}-4\times \frac{1}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
9\sqrt{3}+9\sqrt{2}-4\times \frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
9\sqrt{3}+9\sqrt{2}-4\times \frac{\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
9\sqrt{3}+9\sqrt{2}-4\times \frac{\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
9\sqrt{3}+9\sqrt{2}-\sqrt{2}
Cancel out 4 and 4.
9\sqrt{3}+8\sqrt{2}
Combine 9\sqrt{2} and -\sqrt{2} to get 8\sqrt{2}.