Evaluate
-7\sqrt{10}\approx -22.135943621
Share
Copied to clipboard
3\times 2\sqrt{10}+\sqrt{250}+3\sqrt{360}-4\sqrt{810}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
6\sqrt{10}+\sqrt{250}+3\sqrt{360}-4\sqrt{810}
Multiply 3 and 2 to get 6.
6\sqrt{10}+5\sqrt{10}+3\sqrt{360}-4\sqrt{810}
Factor 250=5^{2}\times 10. Rewrite the square root of the product \sqrt{5^{2}\times 10} as the product of square roots \sqrt{5^{2}}\sqrt{10}. Take the square root of 5^{2}.
11\sqrt{10}+3\sqrt{360}-4\sqrt{810}
Combine 6\sqrt{10} and 5\sqrt{10} to get 11\sqrt{10}.
11\sqrt{10}+3\times 6\sqrt{10}-4\sqrt{810}
Factor 360=6^{2}\times 10. Rewrite the square root of the product \sqrt{6^{2}\times 10} as the product of square roots \sqrt{6^{2}}\sqrt{10}. Take the square root of 6^{2}.
11\sqrt{10}+18\sqrt{10}-4\sqrt{810}
Multiply 3 and 6 to get 18.
29\sqrt{10}-4\sqrt{810}
Combine 11\sqrt{10} and 18\sqrt{10} to get 29\sqrt{10}.
29\sqrt{10}-4\times 9\sqrt{10}
Factor 810=9^{2}\times 10. Rewrite the square root of the product \sqrt{9^{2}\times 10} as the product of square roots \sqrt{9^{2}}\sqrt{10}. Take the square root of 9^{2}.
29\sqrt{10}-36\sqrt{10}
Multiply -4 and 9 to get -36.
-7\sqrt{10}
Combine 29\sqrt{10} and -36\sqrt{10} to get -7\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}