Evaluate
6\sqrt{2}+9\sqrt{3}-\frac{3}{4}\approx 23.323738642
Factor
\frac{3 {(8 \sqrt{2} + 12 \sqrt{3} - 1)}}{4} = 23.323738642358464
Quiz
Arithmetic
5 problems similar to:
3 \sqrt{ 27 } -3 \sqrt{ \frac{ 1 }{ 64 } } \sqrt{ 4 } +3 \sqrt{ 8 }
Share
Copied to clipboard
3\times 3\sqrt{3}-3\sqrt{\frac{1}{64}}\sqrt{4}+3\sqrt{8}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
9\sqrt{3}-3\sqrt{\frac{1}{64}}\sqrt{4}+3\sqrt{8}
Multiply 3 and 3 to get 9.
9\sqrt{3}-3\times \frac{1}{8}\sqrt{4}+3\sqrt{8}
Rewrite the square root of the division \frac{1}{64} as the division of square roots \frac{\sqrt{1}}{\sqrt{64}}. Take the square root of both numerator and denominator.
9\sqrt{3}-\frac{3}{8}\sqrt{4}+3\sqrt{8}
Multiply 3 and \frac{1}{8} to get \frac{3}{8}.
9\sqrt{3}-\frac{3}{8}\times 2+3\sqrt{8}
Calculate the square root of 4 and get 2.
9\sqrt{3}-\frac{3\times 2}{8}+3\sqrt{8}
Express \frac{3}{8}\times 2 as a single fraction.
9\sqrt{3}-\frac{6}{8}+3\sqrt{8}
Multiply 3 and 2 to get 6.
9\sqrt{3}-\frac{3}{4}+3\sqrt{8}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
9\sqrt{3}-\frac{3}{4}+3\times 2\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
9\sqrt{3}-\frac{3}{4}+6\sqrt{2}
Multiply 3 and 2 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}