Evaluate
\frac{59\sqrt{15}}{40}\approx 5.712650436
Share
Copied to clipboard
\frac{3\sqrt{\frac{6+2}{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Multiply 2 and 3 to get 6.
\frac{3\sqrt{\frac{8}{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Add 6 and 2 to get 8.
\frac{3\times \frac{\sqrt{8}}{\sqrt{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
\frac{3\times \frac{2\sqrt{2}}{\sqrt{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{3\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{3\times \frac{2\sqrt{2}\sqrt{3}}{3}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
The square of \sqrt{3} is 3.
\frac{3\times \frac{2\sqrt{6}}{3}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{2\sqrt{6}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Cancel out 3 and 3.
2\sqrt{6}\times 2\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Divide 2\sqrt{6} by \frac{1}{2} by multiplying 2\sqrt{6} by the reciprocal of \frac{1}{2}.
4\sqrt{6}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Multiply 2 and 2 to get 4.
4\sqrt{6}\times \frac{\sqrt{2}}{\sqrt{5}}-\frac{1}{8}\sqrt{15}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
4\sqrt{6}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{1}{8}\sqrt{15}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
4\sqrt{6}\times \frac{\sqrt{2}\sqrt{5}}{5}-\frac{1}{8}\sqrt{15}
The square of \sqrt{5} is 5.
4\sqrt{6}\times \frac{\sqrt{10}}{5}-\frac{1}{8}\sqrt{15}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{4\sqrt{10}}{5}\sqrt{6}-\frac{1}{8}\sqrt{15}
Express 4\times \frac{\sqrt{10}}{5} as a single fraction.
\frac{4\sqrt{10}\sqrt{6}}{5}-\frac{1}{8}\sqrt{15}
Express \frac{4\sqrt{10}}{5}\sqrt{6} as a single fraction.
\frac{4\sqrt{60}}{5}-\frac{1}{8}\sqrt{15}
To multiply \sqrt{10} and \sqrt{6}, multiply the numbers under the square root.
\frac{4\times 2\sqrt{15}}{5}-\frac{1}{8}\sqrt{15}
Factor 60=2^{2}\times 15. Rewrite the square root of the product \sqrt{2^{2}\times 15} as the product of square roots \sqrt{2^{2}}\sqrt{15}. Take the square root of 2^{2}.
\frac{8\sqrt{15}}{5}-\frac{1}{8}\sqrt{15}
Multiply 4 and 2 to get 8.
\frac{59}{40}\sqrt{15}
Combine \frac{8\sqrt{15}}{5} and -\frac{1}{8}\sqrt{15} to get \frac{59}{40}\sqrt{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}