3 \sqrt{ 2 } { \left( \frac{ 1 }{ 2 } \sqrt{ 10 } \right) }^{ } \div 2 \div \sqrt{ 15 }
Evaluate
\frac{\sqrt{3}}{2}\approx 0.866025404
Share
Copied to clipboard
\frac{3\sqrt{2}\times \left(\frac{1}{2}\sqrt{10}\right)^{1}}{2\sqrt{15}}
Express \frac{\frac{3\sqrt{2}\times \left(\frac{1}{2}\sqrt{10}\right)^{1}}{2}}{\sqrt{15}} as a single fraction.
\frac{3\sqrt{2}\times \frac{1}{2}\sqrt{10}}{2\sqrt{15}}
Calculate \frac{1}{2}\sqrt{10} to the power of 1 and get \frac{1}{2}\sqrt{10}.
\frac{\frac{3}{2}\sqrt{2}\sqrt{10}}{2\sqrt{15}}
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{\frac{3}{2}\sqrt{2}\sqrt{2}\sqrt{5}}{2\sqrt{15}}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
\frac{\frac{3}{2}\times 2\sqrt{5}}{2\sqrt{15}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{\frac{3}{2}\sqrt{5}}{\sqrt{15}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{3}{2}\sqrt{5}\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{\frac{3}{2}\sqrt{5}}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\frac{3}{2}\sqrt{5}\sqrt{15}}{15}
The square of \sqrt{15} is 15.
\frac{\frac{3}{2}\sqrt{5}\sqrt{5}\sqrt{3}}{15}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{\frac{3}{2}\times 5\sqrt{3}}{15}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{\frac{15}{2}\sqrt{3}}{15}
Multiply \frac{3}{2} and 5 to get \frac{15}{2}.
\frac{1}{2}\sqrt{3}
Divide \frac{15}{2}\sqrt{3} by 15 to get \frac{1}{2}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}