Evaluate
\frac{9}{2}=4.5
Factor
\frac{3 ^ {2}}{2} = 4\frac{1}{2} = 4.5
Share
Copied to clipboard
\frac{3\times 3\sqrt{2}\times \frac{\sqrt{3}}{6}}{2}\sqrt{6}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{9\sqrt{2}\times \frac{\sqrt{3}}{6}}{2}\sqrt{6}
Multiply 3 and 3 to get 9.
\frac{\frac{9\sqrt{3}}{6}\sqrt{2}}{2}\sqrt{6}
Express 9\times \frac{\sqrt{3}}{6} as a single fraction.
\frac{\frac{3}{2}\sqrt{3}\sqrt{2}}{2}\sqrt{6}
Divide 9\sqrt{3} by 6 to get \frac{3}{2}\sqrt{3}.
\frac{\frac{3}{2}\sqrt{6}}{2}\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{3}{4}\sqrt{6}\sqrt{6}
Divide \frac{3}{2}\sqrt{6} by 2 to get \frac{3}{4}\sqrt{6}.
\frac{3}{4}\times 6
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{3\times 6}{4}
Express \frac{3}{4}\times 6 as a single fraction.
\frac{18}{4}
Multiply 3 and 6 to get 18.
\frac{9}{2}
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}