Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\sqrt{\frac{3}{3}-\frac{2}{3}+\left(\frac{1}{2}\right)^{3}}
Convert 1 to fraction \frac{3}{3}.
3\sqrt{\frac{3-2}{3}+\left(\frac{1}{2}\right)^{3}}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
3\sqrt{\frac{1}{3}+\left(\frac{1}{2}\right)^{3}}
Subtract 2 from 3 to get 1.
3\sqrt{\frac{1}{3}+\frac{1}{8}}
Calculate \frac{1}{2} to the power of 3 and get \frac{1}{8}.
3\sqrt{\frac{8}{24}+\frac{3}{24}}
Least common multiple of 3 and 8 is 24. Convert \frac{1}{3} and \frac{1}{8} to fractions with denominator 24.
3\sqrt{\frac{8+3}{24}}
Since \frac{8}{24} and \frac{3}{24} have the same denominator, add them by adding their numerators.
3\sqrt{\frac{11}{24}}
Add 8 and 3 to get 11.
3\times \frac{\sqrt{11}}{\sqrt{24}}
Rewrite the square root of the division \sqrt{\frac{11}{24}} as the division of square roots \frac{\sqrt{11}}{\sqrt{24}}.
3\times \frac{\sqrt{11}}{2\sqrt{6}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
3\times \frac{\sqrt{11}\sqrt{6}}{2\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{11}}{2\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
3\times \frac{\sqrt{11}\sqrt{6}}{2\times 6}
The square of \sqrt{6} is 6.
3\times \frac{\sqrt{66}}{2\times 6}
To multiply \sqrt{11} and \sqrt{6}, multiply the numbers under the square root.
3\times \frac{\sqrt{66}}{12}
Multiply 2 and 6 to get 12.
\frac{\sqrt{66}}{4}
Cancel out 12, the greatest common factor in 3 and 12.