Evaluate
\frac{\sqrt{66}}{4}\approx 2.031009601
Share
Copied to clipboard
3\sqrt{\frac{3}{3}-\frac{2}{3}+\left(\frac{1}{2}\right)^{3}}
Convert 1 to fraction \frac{3}{3}.
3\sqrt{\frac{3-2}{3}+\left(\frac{1}{2}\right)^{3}}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
3\sqrt{\frac{1}{3}+\left(\frac{1}{2}\right)^{3}}
Subtract 2 from 3 to get 1.
3\sqrt{\frac{1}{3}+\frac{1}{8}}
Calculate \frac{1}{2} to the power of 3 and get \frac{1}{8}.
3\sqrt{\frac{8}{24}+\frac{3}{24}}
Least common multiple of 3 and 8 is 24. Convert \frac{1}{3} and \frac{1}{8} to fractions with denominator 24.
3\sqrt{\frac{8+3}{24}}
Since \frac{8}{24} and \frac{3}{24} have the same denominator, add them by adding their numerators.
3\sqrt{\frac{11}{24}}
Add 8 and 3 to get 11.
3\times \frac{\sqrt{11}}{\sqrt{24}}
Rewrite the square root of the division \sqrt{\frac{11}{24}} as the division of square roots \frac{\sqrt{11}}{\sqrt{24}}.
3\times \frac{\sqrt{11}}{2\sqrt{6}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
3\times \frac{\sqrt{11}\sqrt{6}}{2\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{11}}{2\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
3\times \frac{\sqrt{11}\sqrt{6}}{2\times 6}
The square of \sqrt{6} is 6.
3\times \frac{\sqrt{66}}{2\times 6}
To multiply \sqrt{11} and \sqrt{6}, multiply the numbers under the square root.
3\times \frac{\sqrt{66}}{12}
Multiply 2 and 6 to get 12.
\frac{\sqrt{66}}{4}
Cancel out 12, the greatest common factor in 3 and 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}