Evaluate
-\frac{3\sqrt{14}}{4}\approx -2.80624304
Share
Copied to clipboard
\frac{3\times \frac{\sqrt{7}}{\sqrt{3}}\left(-\frac{1}{8}\right)\sqrt{15}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
Rewrite the square root of the division \sqrt{\frac{7}{3}} as the division of square roots \frac{\sqrt{7}}{\sqrt{3}}.
\frac{3\times \frac{\sqrt{7}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\left(-\frac{1}{8}\right)\sqrt{15}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{3\times \frac{\sqrt{7}\sqrt{3}}{3}\left(-\frac{1}{8}\right)\sqrt{15}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
The square of \sqrt{3} is 3.
\frac{3\times \frac{\sqrt{21}}{3}\left(-\frac{1}{8}\right)\sqrt{15}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{3\left(-1\right)}{8}\times \frac{\sqrt{21}}{3}\sqrt{15}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
Express 3\left(-\frac{1}{8}\right) as a single fraction.
\frac{\frac{-3}{8}\times \frac{\sqrt{21}}{3}\sqrt{15}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
Multiply 3 and -1 to get -3.
\frac{-\frac{3}{8}\times \frac{\sqrt{21}}{3}\sqrt{15}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
Fraction \frac{-3}{8} can be rewritten as -\frac{3}{8} by extracting the negative sign.
\frac{\frac{-3\sqrt{21}}{8\times 3}\sqrt{15}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
Multiply -\frac{3}{8} times \frac{\sqrt{21}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-\sqrt{21}}{8}\sqrt{15}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
Cancel out 3 in both numerator and denominator.
\frac{\frac{-\sqrt{21}\sqrt{15}}{8}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
Express \frac{-\sqrt{21}}{8}\sqrt{15} as a single fraction.
\frac{-\sqrt{21}\sqrt{15}\times 2}{8}\sqrt{\frac{2}{5}}
Divide \frac{-\sqrt{21}\sqrt{15}}{8} by \frac{1}{2} by multiplying \frac{-\sqrt{21}\sqrt{15}}{8} by the reciprocal of \frac{1}{2}.
\frac{-2\sqrt{21}\sqrt{15}}{8}\sqrt{\frac{2}{5}}
Multiply -1 and 2 to get -2.
\frac{-2\sqrt{315}}{8}\sqrt{\frac{2}{5}}
To multiply \sqrt{21} and \sqrt{15}, multiply the numbers under the square root.
-\frac{1}{4}\sqrt{315}\sqrt{\frac{2}{5}}
Divide -2\sqrt{315} by 8 to get -\frac{1}{4}\sqrt{315}.
-\frac{1}{4}\times 3\sqrt{35}\sqrt{\frac{2}{5}}
Factor 315=3^{2}\times 35. Rewrite the square root of the product \sqrt{3^{2}\times 35} as the product of square roots \sqrt{3^{2}}\sqrt{35}. Take the square root of 3^{2}.
\frac{-3}{4}\sqrt{35}\sqrt{\frac{2}{5}}
Express -\frac{1}{4}\times 3 as a single fraction.
-\frac{3}{4}\sqrt{35}\sqrt{\frac{2}{5}}
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
-\frac{3}{4}\sqrt{35}\times \frac{\sqrt{2}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
-\frac{3}{4}\sqrt{35}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
-\frac{3}{4}\sqrt{35}\times \frac{\sqrt{2}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
-\frac{3}{4}\sqrt{35}\times \frac{\sqrt{10}}{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{-3\sqrt{10}}{4\times 5}\sqrt{35}
Multiply -\frac{3}{4} times \frac{\sqrt{10}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-3\sqrt{10}}{20}\sqrt{35}
Multiply 4 and 5 to get 20.
\frac{-3\sqrt{10}\sqrt{35}}{20}
Express \frac{-3\sqrt{10}}{20}\sqrt{35} as a single fraction.
\frac{-3\sqrt{350}}{20}
To multiply \sqrt{10} and \sqrt{35}, multiply the numbers under the square root.
\frac{-3\times 5\sqrt{14}}{20}
Factor 350=5^{2}\times 14. Rewrite the square root of the product \sqrt{5^{2}\times 14} as the product of square roots \sqrt{5^{2}}\sqrt{14}. Take the square root of 5^{2}.
\frac{-15\sqrt{14}}{20}
Multiply -3 and 5 to get -15.
-\frac{3}{4}\sqrt{14}
Divide -15\sqrt{14} by 20 to get -\frac{3}{4}\sqrt{14}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}