Evaluate
\frac{3\sqrt{6}}{4}\approx 1.837117307
Share
Copied to clipboard
3\times \frac{\sqrt{2}}{\sqrt{3}}-\frac{\frac{1}{8}\sqrt{15}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
3\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\frac{\frac{1}{8}\sqrt{15}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
3\times \frac{\sqrt{2}\sqrt{3}}{3}-\frac{\frac{1}{8}\sqrt{15}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
The square of \sqrt{3} is 3.
3\times \frac{\sqrt{6}}{3}-\frac{\frac{1}{8}\sqrt{15}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\sqrt{6}-\frac{\frac{1}{8}\sqrt{15}}{\frac{1}{2}}\sqrt{\frac{2}{5}}
Cancel out 3 and 3.
\sqrt{6}-\frac{1}{8}\sqrt{15}\times 2\sqrt{\frac{2}{5}}
Divide \frac{1}{8}\sqrt{15} by \frac{1}{2} by multiplying \frac{1}{8}\sqrt{15} by the reciprocal of \frac{1}{2}.
\sqrt{6}-\frac{2}{8}\sqrt{15}\sqrt{\frac{2}{5}}
Multiply \frac{1}{8} and 2 to get \frac{2}{8}.
\sqrt{6}-\frac{1}{4}\sqrt{15}\sqrt{\frac{2}{5}}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\sqrt{6}-\frac{1}{4}\sqrt{15}\times \frac{\sqrt{2}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
\sqrt{6}-\frac{1}{4}\sqrt{15}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\sqrt{6}-\frac{1}{4}\sqrt{15}\times \frac{\sqrt{2}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\sqrt{6}-\frac{1}{4}\sqrt{15}\times \frac{\sqrt{10}}{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\sqrt{6}-\frac{\sqrt{10}}{4\times 5}\sqrt{15}
Multiply \frac{1}{4} times \frac{\sqrt{10}}{5} by multiplying numerator times numerator and denominator times denominator.
\sqrt{6}-\frac{\sqrt{10}}{20}\sqrt{15}
Multiply 4 and 5 to get 20.
\sqrt{6}-\frac{\sqrt{10}\sqrt{15}}{20}
Express \frac{\sqrt{10}}{20}\sqrt{15} as a single fraction.
\sqrt{6}-\frac{\sqrt{150}}{20}
To multiply \sqrt{10} and \sqrt{15}, multiply the numbers under the square root.
\sqrt{6}-\frac{5\sqrt{6}}{20}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
\sqrt{6}-\frac{1}{4}\sqrt{6}
Divide 5\sqrt{6} by 20 to get \frac{1}{4}\sqrt{6}.
\frac{3}{4}\sqrt{6}
Combine \sqrt{6} and -\frac{1}{4}\sqrt{6} to get \frac{3}{4}\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}