Evaluate
\frac{9}{8}=1.125
Factor
\frac{3 ^ {2}}{2 ^ {3}} = 1\frac{1}{8} = 1.125
Share
Copied to clipboard
\frac{3\times \frac{3\times \frac{\sqrt{1}}{\sqrt{512}}}{\sqrt{\frac{1}{64}}}\sqrt{\frac{1}{512}}}{\sqrt{\frac{1}{64}}}
Rewrite the square root of the division \sqrt{\frac{1}{512}} as the division of square roots \frac{\sqrt{1}}{\sqrt{512}}.
\frac{3\times \frac{3\times \frac{1}{\sqrt{512}}}{\sqrt{\frac{1}{64}}}\sqrt{\frac{1}{512}}}{\sqrt{\frac{1}{64}}}
Calculate the square root of 1 and get 1.
\frac{3\times \frac{3\times \frac{1}{16\sqrt{2}}}{\sqrt{\frac{1}{64}}}\sqrt{\frac{1}{512}}}{\sqrt{\frac{1}{64}}}
Factor 512=16^{2}\times 2. Rewrite the square root of the product \sqrt{16^{2}\times 2} as the product of square roots \sqrt{16^{2}}\sqrt{2}. Take the square root of 16^{2}.
\frac{3\times \frac{3\times \frac{\sqrt{2}}{16\left(\sqrt{2}\right)^{2}}}{\sqrt{\frac{1}{64}}}\sqrt{\frac{1}{512}}}{\sqrt{\frac{1}{64}}}
Rationalize the denominator of \frac{1}{16\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\times \frac{3\times \frac{\sqrt{2}}{16\times 2}}{\sqrt{\frac{1}{64}}}\sqrt{\frac{1}{512}}}{\sqrt{\frac{1}{64}}}
The square of \sqrt{2} is 2.
\frac{3\times \frac{3\times \frac{\sqrt{2}}{32}}{\sqrt{\frac{1}{64}}}\sqrt{\frac{1}{512}}}{\sqrt{\frac{1}{64}}}
Multiply 16 and 2 to get 32.
\frac{3\times \frac{\frac{3\sqrt{2}}{32}}{\sqrt{\frac{1}{64}}}\sqrt{\frac{1}{512}}}{\sqrt{\frac{1}{64}}}
Express 3\times \frac{\sqrt{2}}{32} as a single fraction.
\frac{3\times \frac{\frac{3\sqrt{2}}{32}}{\frac{1}{8}}\sqrt{\frac{1}{512}}}{\sqrt{\frac{1}{64}}}
Rewrite the square root of the division \frac{1}{64} as the division of square roots \frac{\sqrt{1}}{\sqrt{64}}. Take the square root of both numerator and denominator.
\frac{3\times \frac{3\sqrt{2}\times 8}{32}\sqrt{\frac{1}{512}}}{\sqrt{\frac{1}{64}}}
Divide \frac{3\sqrt{2}}{32} by \frac{1}{8} by multiplying \frac{3\sqrt{2}}{32} by the reciprocal of \frac{1}{8}.
\frac{3\times \frac{24\sqrt{2}}{32}\sqrt{\frac{1}{512}}}{\sqrt{\frac{1}{64}}}
Multiply 3 and 8 to get 24.
\frac{3\times \frac{3}{4}\sqrt{2}\sqrt{\frac{1}{512}}}{\sqrt{\frac{1}{64}}}
Divide 24\sqrt{2} by 32 to get \frac{3}{4}\sqrt{2}.
\frac{\frac{3\times 3}{4}\sqrt{2}\sqrt{\frac{1}{512}}}{\sqrt{\frac{1}{64}}}
Express 3\times \frac{3}{4} as a single fraction.
\frac{\frac{9}{4}\sqrt{2}\sqrt{\frac{1}{512}}}{\sqrt{\frac{1}{64}}}
Multiply 3 and 3 to get 9.
\frac{\frac{9}{4}\sqrt{2}\times \frac{\sqrt{1}}{\sqrt{512}}}{\sqrt{\frac{1}{64}}}
Rewrite the square root of the division \sqrt{\frac{1}{512}} as the division of square roots \frac{\sqrt{1}}{\sqrt{512}}.
\frac{\frac{9}{4}\sqrt{2}\times \frac{1}{\sqrt{512}}}{\sqrt{\frac{1}{64}}}
Calculate the square root of 1 and get 1.
\frac{\frac{9}{4}\sqrt{2}\times \frac{1}{16\sqrt{2}}}{\sqrt{\frac{1}{64}}}
Factor 512=16^{2}\times 2. Rewrite the square root of the product \sqrt{16^{2}\times 2} as the product of square roots \sqrt{16^{2}}\sqrt{2}. Take the square root of 16^{2}.
\frac{\frac{9}{4}\sqrt{2}\times \frac{\sqrt{2}}{16\left(\sqrt{2}\right)^{2}}}{\sqrt{\frac{1}{64}}}
Rationalize the denominator of \frac{1}{16\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{9}{4}\sqrt{2}\times \frac{\sqrt{2}}{16\times 2}}{\sqrt{\frac{1}{64}}}
The square of \sqrt{2} is 2.
\frac{\frac{9}{4}\sqrt{2}\times \frac{\sqrt{2}}{32}}{\sqrt{\frac{1}{64}}}
Multiply 16 and 2 to get 32.
\frac{\frac{9\sqrt{2}}{4\times 32}\sqrt{2}}{\sqrt{\frac{1}{64}}}
Multiply \frac{9}{4} times \frac{\sqrt{2}}{32} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{9\sqrt{2}}{4\times 32}\sqrt{2}}{\frac{1}{8}}
Rewrite the square root of the division \frac{1}{64} as the division of square roots \frac{\sqrt{1}}{\sqrt{64}}. Take the square root of both numerator and denominator.
\frac{\frac{9\sqrt{2}}{128}\sqrt{2}}{\frac{1}{8}}
Multiply 4 and 32 to get 128.
\frac{\frac{9\sqrt{2}\sqrt{2}}{128}}{\frac{1}{8}}
Express \frac{9\sqrt{2}}{128}\sqrt{2} as a single fraction.
\frac{9\sqrt{2}\sqrt{2}\times 8}{128}
Divide \frac{9\sqrt{2}\sqrt{2}}{128} by \frac{1}{8} by multiplying \frac{9\sqrt{2}\sqrt{2}}{128} by the reciprocal of \frac{1}{8}.
9\sqrt{2}\sqrt{2}\times \frac{1}{16}
Divide 9\sqrt{2}\sqrt{2}\times 8 by 128 to get 9\sqrt{2}\sqrt{2}\times \frac{1}{16}.
9\times 2\times \frac{1}{16}
Multiply \sqrt{2} and \sqrt{2} to get 2.
18\times \frac{1}{16}
Multiply 9 and 2 to get 18.
\frac{18}{16}
Multiply 18 and \frac{1}{16} to get \frac{18}{16}.
\frac{9}{8}
Reduce the fraction \frac{18}{16} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}