Evaluate
15\sqrt{3}\approx 25.980762114
Share
Copied to clipboard
15\sqrt{\frac{1}{2}}\sqrt{6}
Multiply 3 and 5 to get 15.
15\times \frac{\sqrt{1}}{\sqrt{2}}\sqrt{6}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
15\times \frac{1}{\sqrt{2}}\sqrt{6}
Calculate the square root of 1 and get 1.
15\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\sqrt{6}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
15\times \frac{\sqrt{2}}{2}\sqrt{6}
The square of \sqrt{2} is 2.
\frac{15\sqrt{2}}{2}\sqrt{6}
Express 15\times \frac{\sqrt{2}}{2} as a single fraction.
\frac{15\sqrt{2}\sqrt{6}}{2}
Express \frac{15\sqrt{2}}{2}\sqrt{6} as a single fraction.
\frac{15\sqrt{2}\sqrt{2}\sqrt{3}}{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{15\times 2\sqrt{3}}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{30\sqrt{3}}{2}
Multiply 15 and 2 to get 30.
15\sqrt{3}
Divide 30\sqrt{3} by 2 to get 15\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}