Solve for x
x = \frac{23 - 3 \sqrt{37}}{2} \approx 2.375856205
Graph
Share
Copied to clipboard
3\sqrt{x}=7-x
Subtract x from both sides of the equation.
\left(3\sqrt{x}\right)^{2}=\left(7-x\right)^{2}
Square both sides of the equation.
3^{2}\left(\sqrt{x}\right)^{2}=\left(7-x\right)^{2}
Expand \left(3\sqrt{x}\right)^{2}.
9\left(\sqrt{x}\right)^{2}=\left(7-x\right)^{2}
Calculate 3 to the power of 2 and get 9.
9x=\left(7-x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
9x=49-14x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-x\right)^{2}.
9x-49=-14x+x^{2}
Subtract 49 from both sides.
9x-49+14x=x^{2}
Add 14x to both sides.
23x-49=x^{2}
Combine 9x and 14x to get 23x.
23x-49-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+23x-49=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-23±\sqrt{23^{2}-4\left(-1\right)\left(-49\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 23 for b, and -49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-23±\sqrt{529-4\left(-1\right)\left(-49\right)}}{2\left(-1\right)}
Square 23.
x=\frac{-23±\sqrt{529+4\left(-49\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-23±\sqrt{529-196}}{2\left(-1\right)}
Multiply 4 times -49.
x=\frac{-23±\sqrt{333}}{2\left(-1\right)}
Add 529 to -196.
x=\frac{-23±3\sqrt{37}}{2\left(-1\right)}
Take the square root of 333.
x=\frac{-23±3\sqrt{37}}{-2}
Multiply 2 times -1.
x=\frac{3\sqrt{37}-23}{-2}
Now solve the equation x=\frac{-23±3\sqrt{37}}{-2} when ± is plus. Add -23 to 3\sqrt{37}.
x=\frac{23-3\sqrt{37}}{2}
Divide -23+3\sqrt{37} by -2.
x=\frac{-3\sqrt{37}-23}{-2}
Now solve the equation x=\frac{-23±3\sqrt{37}}{-2} when ± is minus. Subtract 3\sqrt{37} from -23.
x=\frac{3\sqrt{37}+23}{2}
Divide -23-3\sqrt{37} by -2.
x=\frac{23-3\sqrt{37}}{2} x=\frac{3\sqrt{37}+23}{2}
The equation is now solved.
3\sqrt{\frac{23-3\sqrt{37}}{2}}+\frac{23-3\sqrt{37}}{2}=7
Substitute \frac{23-3\sqrt{37}}{2} for x in the equation 3\sqrt{x}+x=7.
7=7
Simplify. The value x=\frac{23-3\sqrt{37}}{2} satisfies the equation.
3\sqrt{\frac{3\sqrt{37}+23}{2}}+\frac{3\sqrt{37}+23}{2}=7
Substitute \frac{3\sqrt{37}+23}{2} for x in the equation 3\sqrt{x}+x=7.
16+3\times 37^{\frac{1}{2}}=7
Simplify. The value x=\frac{3\sqrt{37}+23}{2} does not satisfy the equation.
x=\frac{23-3\sqrt{37}}{2}
Equation 3\sqrt{x}=7-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}