Solve for p
p=17
Share
Copied to clipboard
\left(3\sqrt{p-1}\right)^{2}=\left(2\sqrt{2p+2}\right)^{2}
Square both sides of the equation.
3^{2}\left(\sqrt{p-1}\right)^{2}=\left(2\sqrt{2p+2}\right)^{2}
Expand \left(3\sqrt{p-1}\right)^{2}.
9\left(\sqrt{p-1}\right)^{2}=\left(2\sqrt{2p+2}\right)^{2}
Calculate 3 to the power of 2 and get 9.
9\left(p-1\right)=\left(2\sqrt{2p+2}\right)^{2}
Calculate \sqrt{p-1} to the power of 2 and get p-1.
9p-9=\left(2\sqrt{2p+2}\right)^{2}
Use the distributive property to multiply 9 by p-1.
9p-9=2^{2}\left(\sqrt{2p+2}\right)^{2}
Expand \left(2\sqrt{2p+2}\right)^{2}.
9p-9=4\left(\sqrt{2p+2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
9p-9=4\left(2p+2\right)
Calculate \sqrt{2p+2} to the power of 2 and get 2p+2.
9p-9=8p+8
Use the distributive property to multiply 4 by 2p+2.
9p-9-8p=8
Subtract 8p from both sides.
p-9=8
Combine 9p and -8p to get p.
p=8+9
Add 9 to both sides.
p=17
Add 8 and 9 to get 17.
3\sqrt{17-1}=2\sqrt{2\times 17+2}
Substitute 17 for p in the equation 3\sqrt{p-1}=2\sqrt{2p+2}.
12=12
Simplify. The value p=17 satisfies the equation.
p=17
Equation 3\sqrt{p-1}=2\sqrt{2p+2} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}