Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\sqrt{8x}=1-\sqrt{2x}
Subtract \sqrt{2x} from both sides of the equation.
\left(3\sqrt{8x}\right)^{2}=\left(1-\sqrt{2x}\right)^{2}
Square both sides of the equation.
3^{2}\left(\sqrt{8x}\right)^{2}=\left(1-\sqrt{2x}\right)^{2}
Expand \left(3\sqrt{8x}\right)^{2}.
9\left(\sqrt{8x}\right)^{2}=\left(1-\sqrt{2x}\right)^{2}
Calculate 3 to the power of 2 and get 9.
9\times 8x=\left(1-\sqrt{2x}\right)^{2}
Calculate \sqrt{8x} to the power of 2 and get 8x.
72x=\left(1-\sqrt{2x}\right)^{2}
Multiply 9 and 8 to get 72.
72x=1-2\sqrt{2x}+\left(\sqrt{2x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{2x}\right)^{2}.
72x=1-2\sqrt{2x}+2x
Calculate \sqrt{2x} to the power of 2 and get 2x.
72x-\left(1+2x\right)=-2\sqrt{2x}
Subtract 1+2x from both sides of the equation.
72x-1-2x=-2\sqrt{2x}
To find the opposite of 1+2x, find the opposite of each term.
70x-1=-2\sqrt{2x}
Combine 72x and -2x to get 70x.
\left(70x-1\right)^{2}=\left(-2\sqrt{2x}\right)^{2}
Square both sides of the equation.
4900x^{2}-140x+1=\left(-2\sqrt{2x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(70x-1\right)^{2}.
4900x^{2}-140x+1=\left(-2\right)^{2}\left(\sqrt{2x}\right)^{2}
Expand \left(-2\sqrt{2x}\right)^{2}.
4900x^{2}-140x+1=4\left(\sqrt{2x}\right)^{2}
Calculate -2 to the power of 2 and get 4.
4900x^{2}-140x+1=4\times 2x
Calculate \sqrt{2x} to the power of 2 and get 2x.
4900x^{2}-140x+1=8x
Multiply 4 and 2 to get 8.
4900x^{2}-140x+1-8x=0
Subtract 8x from both sides.
4900x^{2}-148x+1=0
Combine -140x and -8x to get -148x.
x=\frac{-\left(-148\right)±\sqrt{\left(-148\right)^{2}-4\times 4900}}{2\times 4900}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4900 for a, -148 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-148\right)±\sqrt{21904-4\times 4900}}{2\times 4900}
Square -148.
x=\frac{-\left(-148\right)±\sqrt{21904-19600}}{2\times 4900}
Multiply -4 times 4900.
x=\frac{-\left(-148\right)±\sqrt{2304}}{2\times 4900}
Add 21904 to -19600.
x=\frac{-\left(-148\right)±48}{2\times 4900}
Take the square root of 2304.
x=\frac{148±48}{2\times 4900}
The opposite of -148 is 148.
x=\frac{148±48}{9800}
Multiply 2 times 4900.
x=\frac{196}{9800}
Now solve the equation x=\frac{148±48}{9800} when ± is plus. Add 148 to 48.
x=\frac{1}{50}
Reduce the fraction \frac{196}{9800} to lowest terms by extracting and canceling out 196.
x=\frac{100}{9800}
Now solve the equation x=\frac{148±48}{9800} when ± is minus. Subtract 48 from 148.
x=\frac{1}{98}
Reduce the fraction \frac{100}{9800} to lowest terms by extracting and canceling out 100.
x=\frac{1}{50} x=\frac{1}{98}
The equation is now solved.
3\sqrt{8\times \frac{1}{50}}+\sqrt{2\times \frac{1}{50}}=1
Substitute \frac{1}{50} for x in the equation 3\sqrt{8x}+\sqrt{2x}=1.
\frac{7}{5}=1
Simplify. The value x=\frac{1}{50} does not satisfy the equation.
3\sqrt{8\times \frac{1}{98}}+\sqrt{2\times \frac{1}{98}}=1
Substitute \frac{1}{98} for x in the equation 3\sqrt{8x}+\sqrt{2x}=1.
1=1
Simplify. The value x=\frac{1}{98} satisfies the equation.
x=\frac{1}{98}
Equation 3\sqrt{8x}=-\sqrt{2x}+1 has a unique solution.