Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(\sqrt{5}\right)^{2}+3\sqrt{5}x-2x\left(x^{2}-3\sqrt{5}\right)
Use the distributive property to multiply 3\sqrt{5} by \sqrt{5}+x.
3\times 5+3\sqrt{5}x-2x\left(x^{2}-3\sqrt{5}\right)
The square of \sqrt{5} is 5.
15+3\sqrt{5}x-2x\left(x^{2}-3\sqrt{5}\right)
Multiply 3 and 5 to get 15.
15+3\sqrt{5}x-2x^{3}+6x\sqrt{5}
Use the distributive property to multiply -2x by x^{2}-3\sqrt{5}.
15+9\sqrt{5}x-2x^{3}
Combine 3\sqrt{5}x and 6x\sqrt{5} to get 9\sqrt{5}x.
\frac{\mathrm{d}}{\mathrm{d}x}(3\left(\sqrt{5}\right)^{2}+3\sqrt{5}x-2x\left(x^{2}-3\sqrt{5}\right))
Use the distributive property to multiply 3\sqrt{5} by \sqrt{5}+x.
\frac{\mathrm{d}}{\mathrm{d}x}(3\times 5+3\sqrt{5}x-2x\left(x^{2}-3\sqrt{5}\right))
The square of \sqrt{5} is 5.
\frac{\mathrm{d}}{\mathrm{d}x}(15+3\sqrt{5}x-2x\left(x^{2}-3\sqrt{5}\right))
Multiply 3 and 5 to get 15.
\frac{\mathrm{d}}{\mathrm{d}x}(15+3\sqrt{5}x-2x^{3}+6x\sqrt{5})
Use the distributive property to multiply -2x by x^{2}-3\sqrt{5}.
\frac{\mathrm{d}}{\mathrm{d}x}(15+9\sqrt{5}x-2x^{3})
Combine 3\sqrt{5}x and 6x\sqrt{5} to get 9\sqrt{5}x.
9\sqrt{5}x^{1-1}+3\left(-2\right)x^{3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
9\sqrt{5}x^{0}+3\left(-2\right)x^{3-1}
Subtract 1 from 1.
9\sqrt{5}x^{0}-6x^{3-1}
Multiply 3 times -2.
9\sqrt{5}x^{0}-6x^{2}
Subtract 1 from 3.
9\sqrt{5}\times 1-6x^{2}
For any term t except 0, t^{0}=1.
9\sqrt{5}-6x^{2}
For any term t, t\times 1=t and 1t=t.