Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\sqrt{5}\left(\left(\sqrt{2}\right)^{2}+4\sqrt{2}\sqrt{5}+4\left(\sqrt{5}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+2\sqrt{5}\right)^{2}.
3\sqrt{5}\left(2+4\sqrt{2}\sqrt{5}+4\left(\sqrt{5}\right)^{2}\right)
The square of \sqrt{2} is 2.
3\sqrt{5}\left(2+4\sqrt{10}+4\left(\sqrt{5}\right)^{2}\right)
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
3\sqrt{5}\left(2+4\sqrt{10}+4\times 5\right)
The square of \sqrt{5} is 5.
3\sqrt{5}\left(2+4\sqrt{10}+20\right)
Multiply 4 and 5 to get 20.
3\sqrt{5}\left(22+4\sqrt{10}\right)
Add 2 and 20 to get 22.
66\sqrt{5}+12\sqrt{5}\sqrt{10}
Use the distributive property to multiply 3\sqrt{5} by 22+4\sqrt{10}.
66\sqrt{5}+12\sqrt{5}\sqrt{5}\sqrt{2}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
66\sqrt{5}+12\times 5\sqrt{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
66\sqrt{5}+60\sqrt{2}
Multiply 12 and 5 to get 60.