Evaluate
10\sqrt{6}\approx 24.494897428
Share
Copied to clipboard
\frac{3\times 3\sqrt{5}}{\sqrt{\frac{1}{5}}}\times \frac{2}{3}\sqrt{\frac{2}{3}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{9\sqrt{5}}{\sqrt{\frac{1}{5}}}\times \frac{2}{3}\sqrt{\frac{2}{3}}
Multiply 3 and 3 to get 9.
\frac{9\sqrt{5}}{\frac{\sqrt{1}}{\sqrt{5}}}\times \frac{2}{3}\sqrt{\frac{2}{3}}
Rewrite the square root of the division \sqrt{\frac{1}{5}} as the division of square roots \frac{\sqrt{1}}{\sqrt{5}}.
\frac{9\sqrt{5}}{\frac{1}{\sqrt{5}}}\times \frac{2}{3}\sqrt{\frac{2}{3}}
Calculate the square root of 1 and get 1.
\frac{9\sqrt{5}}{\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}\times \frac{2}{3}\sqrt{\frac{2}{3}}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{9\sqrt{5}}{\frac{\sqrt{5}}{5}}\times \frac{2}{3}\sqrt{\frac{2}{3}}
The square of \sqrt{5} is 5.
\frac{9\sqrt{5}\times 5}{\sqrt{5}}\times \frac{2}{3}\sqrt{\frac{2}{3}}
Divide 9\sqrt{5} by \frac{\sqrt{5}}{5} by multiplying 9\sqrt{5} by the reciprocal of \frac{\sqrt{5}}{5}.
\frac{9\sqrt{5}\times 5\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\times \frac{2}{3}\sqrt{\frac{2}{3}}
Rationalize the denominator of \frac{9\sqrt{5}\times 5}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{9\sqrt{5}\times 5\sqrt{5}}{5}\times \frac{2}{3}\sqrt{\frac{2}{3}}
The square of \sqrt{5} is 5.
\frac{45\sqrt{5}\sqrt{5}}{5}\times \frac{2}{3}\sqrt{\frac{2}{3}}
Multiply 9 and 5 to get 45.
\frac{45\times 5}{5}\times \frac{2}{3}\sqrt{\frac{2}{3}}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{225}{5}\times \frac{2}{3}\sqrt{\frac{2}{3}}
Multiply 45 and 5 to get 225.
45\times \frac{2}{3}\sqrt{\frac{2}{3}}
Divide 225 by 5 to get 45.
\frac{45\times 2}{3}\sqrt{\frac{2}{3}}
Express 45\times \frac{2}{3} as a single fraction.
\frac{90}{3}\sqrt{\frac{2}{3}}
Multiply 45 and 2 to get 90.
30\sqrt{\frac{2}{3}}
Divide 90 by 3 to get 30.
30\times \frac{\sqrt{2}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
30\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
30\times \frac{\sqrt{2}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
30\times \frac{\sqrt{6}}{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
10\sqrt{6}
Cancel out 3, the greatest common factor in 30 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}