Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\sqrt{42}-2\times \frac{\sqrt{1}}{\sqrt{8}}+2\sqrt{\frac{1}{32}}
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
3\sqrt{42}-2\times \frac{1}{\sqrt{8}}+2\sqrt{\frac{1}{32}}
Calculate the square root of 1 and get 1.
3\sqrt{42}-2\times \frac{1}{2\sqrt{2}}+2\sqrt{\frac{1}{32}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
3\sqrt{42}-2\times \frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+2\sqrt{\frac{1}{32}}
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
3\sqrt{42}-2\times \frac{\sqrt{2}}{2\times 2}+2\sqrt{\frac{1}{32}}
The square of \sqrt{2} is 2.
3\sqrt{42}-2\times \frac{\sqrt{2}}{4}+2\sqrt{\frac{1}{32}}
Multiply 2 and 2 to get 4.
3\sqrt{42}+\frac{\sqrt{2}}{-2}+2\sqrt{\frac{1}{32}}
Cancel out 4, the greatest common factor in 2 and 4.
3\sqrt{42}+\frac{\sqrt{2}}{-2}+2\times \frac{\sqrt{1}}{\sqrt{32}}
Rewrite the square root of the division \sqrt{\frac{1}{32}} as the division of square roots \frac{\sqrt{1}}{\sqrt{32}}.
3\sqrt{42}+\frac{\sqrt{2}}{-2}+2\times \frac{1}{\sqrt{32}}
Calculate the square root of 1 and get 1.
3\sqrt{42}+\frac{\sqrt{2}}{-2}+2\times \frac{1}{4\sqrt{2}}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
3\sqrt{42}+\frac{\sqrt{2}}{-2}+2\times \frac{\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{4\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
3\sqrt{42}+\frac{\sqrt{2}}{-2}+2\times \frac{\sqrt{2}}{4\times 2}
The square of \sqrt{2} is 2.
3\sqrt{42}+\frac{\sqrt{2}}{-2}+2\times \frac{\sqrt{2}}{8}
Multiply 4 and 2 to get 8.
3\sqrt{42}+\frac{\sqrt{2}}{-2}+\frac{\sqrt{2}}{4}
Cancel out 8, the greatest common factor in 2 and 8.
3\sqrt{42}-\frac{1}{4}\sqrt{2}
Combine \frac{\sqrt{2}}{-2} and \frac{\sqrt{2}}{4} to get -\frac{1}{4}\sqrt{2}.