Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\times 3\sqrt{3}+4\sqrt{12}-3\sqrt{48}+\sqrt{192}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
9\sqrt{3}+4\sqrt{12}-3\sqrt{48}+\sqrt{192}
Multiply 3 and 3 to get 9.
9\sqrt{3}+4\times 2\sqrt{3}-3\sqrt{48}+\sqrt{192}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
9\sqrt{3}+8\sqrt{3}-3\sqrt{48}+\sqrt{192}
Multiply 4 and 2 to get 8.
17\sqrt{3}-3\sqrt{48}+\sqrt{192}
Combine 9\sqrt{3} and 8\sqrt{3} to get 17\sqrt{3}.
17\sqrt{3}-3\times 4\sqrt{3}+\sqrt{192}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
17\sqrt{3}-12\sqrt{3}+\sqrt{192}
Multiply -3 and 4 to get -12.
5\sqrt{3}+\sqrt{192}
Combine 17\sqrt{3} and -12\sqrt{3} to get 5\sqrt{3}.
5\sqrt{3}+8\sqrt{3}
Factor 192=8^{2}\times 3. Rewrite the square root of the product \sqrt{8^{2}\times 3} as the product of square roots \sqrt{8^{2}}\sqrt{3}. Take the square root of 8^{2}.
13\sqrt{3}
Combine 5\sqrt{3} and 8\sqrt{3} to get 13\sqrt{3}.