Solve for x
x=27
Graph
Share
Copied to clipboard
\left(3\sqrt{2x-5}\right)^{2}=\left(x-6\right)^{2}
Square both sides of the equation.
3^{2}\left(\sqrt{2x-5}\right)^{2}=\left(x-6\right)^{2}
Expand \left(3\sqrt{2x-5}\right)^{2}.
9\left(\sqrt{2x-5}\right)^{2}=\left(x-6\right)^{2}
Calculate 3 to the power of 2 and get 9.
9\left(2x-5\right)=\left(x-6\right)^{2}
Calculate \sqrt{2x-5} to the power of 2 and get 2x-5.
18x-45=\left(x-6\right)^{2}
Use the distributive property to multiply 9 by 2x-5.
18x-45=x^{2}-12x+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
18x-45-x^{2}=-12x+36
Subtract x^{2} from both sides.
18x-45-x^{2}+12x=36
Add 12x to both sides.
30x-45-x^{2}=36
Combine 18x and 12x to get 30x.
30x-45-x^{2}-36=0
Subtract 36 from both sides.
30x-81-x^{2}=0
Subtract 36 from -45 to get -81.
-x^{2}+30x-81=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=30 ab=-\left(-81\right)=81
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-81. To find a and b, set up a system to be solved.
1,81 3,27 9,9
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 81.
1+81=82 3+27=30 9+9=18
Calculate the sum for each pair.
a=27 b=3
The solution is the pair that gives sum 30.
\left(-x^{2}+27x\right)+\left(3x-81\right)
Rewrite -x^{2}+30x-81 as \left(-x^{2}+27x\right)+\left(3x-81\right).
-x\left(x-27\right)+3\left(x-27\right)
Factor out -x in the first and 3 in the second group.
\left(x-27\right)\left(-x+3\right)
Factor out common term x-27 by using distributive property.
x=27 x=3
To find equation solutions, solve x-27=0 and -x+3=0.
3\sqrt{2\times 27-5}=27-6
Substitute 27 for x in the equation 3\sqrt{2x-5}=x-6.
21=21
Simplify. The value x=27 satisfies the equation.
3\sqrt{2\times 3-5}=3-6
Substitute 3 for x in the equation 3\sqrt{2x-5}=x-6.
3=-3
Simplify. The value x=3 does not satisfy the equation because the left and the right hand side have opposite signs.
x=27
Equation 3\sqrt{2x-5}=x-6 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}