Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\sqrt{2}x^{2}=-\sqrt{3}
Subtract \sqrt{3} from both sides. Anything subtracted from zero gives its negation.
x^{2}=-\frac{\sqrt{3}}{3\sqrt{2}}
Dividing by 3\sqrt{2} undoes the multiplication by 3\sqrt{2}.
x^{2}=-\frac{\sqrt{6}}{6}
Divide -\sqrt{3} by 3\sqrt{2}.
x=\frac{6^{\frac{3}{4}}i}{6} x=-\frac{6^{\frac{3}{4}}i}{6}
Take the square root of both sides of the equation.
3\sqrt{2}x^{2}+\sqrt{3}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 3\sqrt{2}\sqrt{3}}}{2\times 3\sqrt{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3\sqrt{2} for a, 0 for b, and \sqrt{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\sqrt{2}\sqrt{3}}}{2\times 3\sqrt{2}}
Square 0.
x=\frac{0±\sqrt{\left(-12\sqrt{2}\right)\sqrt{3}}}{2\times 3\sqrt{2}}
Multiply -4 times 3\sqrt{2}.
x=\frac{0±\sqrt{-12\sqrt{6}}}{2\times 3\sqrt{2}}
Multiply -12\sqrt{2} times \sqrt{3}.
x=\frac{0±\sqrt[4]{54}\times \left(2i\right)}{2\times 3\sqrt{2}}
Take the square root of -12\sqrt{6}.
x=\frac{0±\sqrt[4]{54}\times \left(2i\right)}{6\sqrt{2}}
Multiply 2 times 3\sqrt{2}.
x=\frac{6^{\frac{3}{4}}i}{6}
Now solve the equation x=\frac{0±\sqrt[4]{54}\times \left(2i\right)}{6\sqrt{2}} when ± is plus.
x=-\frac{6^{\frac{3}{4}}i}{6}
Now solve the equation x=\frac{0±\sqrt[4]{54}\times \left(2i\right)}{6\sqrt{2}} when ± is minus.
x=\frac{6^{\frac{3}{4}}i}{6} x=-\frac{6^{\frac{3}{4}}i}{6}
The equation is now solved.