Evaluate (complex solution)
-\frac{4\sqrt{3}i}{3}\approx -0-2.309401077i
Real Part (complex solution)
0
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\frac{3\sqrt{\frac{2\times 3+2}{3}}\left(-\frac{1}{3}\right)\sqrt{-5}}{1}\sqrt{\frac{2}{5}}
Divide 2 by 2 to get 1.
\frac{3\sqrt{\frac{6+2}{3}}\left(-\frac{1}{3}\right)\sqrt{-5}}{1}\sqrt{\frac{2}{5}}
Multiply 2 and 3 to get 6.
\frac{3\sqrt{\frac{8}{3}}\left(-\frac{1}{3}\right)\sqrt{-5}}{1}\sqrt{\frac{2}{5}}
Add 6 and 2 to get 8.
\frac{3\times \frac{\sqrt{8}}{\sqrt{3}}\left(-\frac{1}{3}\right)\sqrt{-5}}{1}\sqrt{\frac{2}{5}}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
\frac{3\times \frac{2\sqrt{2}}{\sqrt{3}}\left(-\frac{1}{3}\right)\sqrt{-5}}{1}\sqrt{\frac{2}{5}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{3\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\left(-\frac{1}{3}\right)\sqrt{-5}}{1}\sqrt{\frac{2}{5}}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{3\times \frac{2\sqrt{2}\sqrt{3}}{3}\left(-\frac{1}{3}\right)\sqrt{-5}}{1}\sqrt{\frac{2}{5}}
The square of \sqrt{3} is 3.
\frac{3\times \frac{2\sqrt{6}}{3}\left(-\frac{1}{3}\right)\sqrt{-5}}{1}\sqrt{\frac{2}{5}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{-\frac{2\sqrt{6}}{3}\sqrt{-5}}{1}\sqrt{\frac{2}{5}}
Cancel out 3 and 3.
\frac{-\frac{2\sqrt{6}}{3}\sqrt{5}i}{1}\sqrt{\frac{2}{5}}
Factor -5=5\left(-1\right). Rewrite the square root of the product \sqrt{5\left(-1\right)} as the product of square roots \sqrt{5}\sqrt{-1}. By definition, the square root of -1 is i.
\frac{-i\times \frac{2\sqrt{6}}{3}\sqrt{5}}{1}\sqrt{\frac{2}{5}}
Multiply -1 and i to get -i.
\frac{-i\times \frac{2\sqrt{6}\sqrt{5}}{3}}{1}\sqrt{\frac{2}{5}}
Express \frac{2\sqrt{6}}{3}\sqrt{5} as a single fraction.
-i\times \frac{2\sqrt{6}\sqrt{5}}{3}\sqrt{\frac{2}{5}}
Anything divided by one gives itself.
-i\times \frac{2\sqrt{30}}{3}\sqrt{\frac{2}{5}}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
-i\times \frac{2\sqrt{30}}{3}\times \frac{\sqrt{2}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
-i\times \frac{2\sqrt{30}}{3}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
-i\times \frac{2\sqrt{30}}{3}\times \frac{\sqrt{2}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
-i\times \frac{2\sqrt{30}}{3}\times \frac{\sqrt{10}}{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
-i\times \frac{2\sqrt{30}\sqrt{10}}{3\times 5}
Multiply \frac{2\sqrt{30}}{3} times \frac{\sqrt{10}}{5} by multiplying numerator times numerator and denominator times denominator.
-i\times \frac{2\sqrt{10}\sqrt{3}\sqrt{10}}{3\times 5}
Factor 30=10\times 3. Rewrite the square root of the product \sqrt{10\times 3} as the product of square roots \sqrt{10}\sqrt{3}.
-i\times \frac{2\times 10\sqrt{3}}{3\times 5}
Multiply \sqrt{10} and \sqrt{10} to get 10.
-i\times \frac{20\sqrt{3}}{3\times 5}
Multiply 2 and 10 to get 20.
-i\times \frac{20\sqrt{3}}{15}
Multiply 3 and 5 to get 15.
-i\times \frac{4}{3}\sqrt{3}
Divide 20\sqrt{3} by 15 to get \frac{4}{3}\sqrt{3}.
-\frac{4}{3}i\sqrt{3}
Multiply -i and \frac{4}{3} to get -\frac{4}{3}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}