Evaluate
-\frac{3}{4}=-0.75
Factor
-\frac{3}{4} = -0.75
Share
Copied to clipboard
\frac{3\sqrt{\frac{6+2}{3}}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Multiply 2 and 3 to get 6.
\frac{3\sqrt{\frac{8}{3}}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Add 6 and 2 to get 8.
\frac{3\times \frac{\sqrt{8}}{\sqrt{3}}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
\frac{3\times \frac{2\sqrt{2}}{\sqrt{3}}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{3\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{3\times \frac{2\sqrt{2}\sqrt{3}}{3}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
The square of \sqrt{3} is 3.
\frac{3\times \frac{2\sqrt{6}}{3}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{2\sqrt{6}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Cancel out 3 and 3.
\sqrt{6}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Cancel out 2 and 2.
\sqrt{6}\times \frac{\sqrt{2}}{\sqrt{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
\sqrt{6}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(-\frac{1}{8}\right)\sqrt{15}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\sqrt{6}\times \frac{\sqrt{2}\sqrt{5}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
The square of \sqrt{5} is 5.
\sqrt{6}\times \frac{\sqrt{10}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{6}\sqrt{10}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
Express \sqrt{6}\times \frac{\sqrt{10}}{5} as a single fraction.
\frac{-\sqrt{6}\sqrt{10}}{5\times 8}\sqrt{15}
Multiply \frac{\sqrt{6}\sqrt{10}}{5} times -\frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-\sqrt{6}\sqrt{10}\sqrt{15}}{5\times 8}
Express \frac{-\sqrt{6}\sqrt{10}}{5\times 8}\sqrt{15} as a single fraction.
\frac{-\sqrt{60}\sqrt{15}}{5\times 8}
To multiply \sqrt{6} and \sqrt{10}, multiply the numbers under the square root.
\frac{-\sqrt{15}\sqrt{4}\sqrt{15}}{5\times 8}
Factor 60=15\times 4. Rewrite the square root of the product \sqrt{15\times 4} as the product of square roots \sqrt{15}\sqrt{4}.
\frac{-15\sqrt{4}}{5\times 8}
Multiply \sqrt{15} and \sqrt{15} to get 15.
\frac{-15\sqrt{4}}{40}
Multiply 5 and 8 to get 40.
\frac{-15\times 2}{40}
Calculate the square root of 4 and get 2.
\frac{-30}{40}
Multiply -15 and 2 to get -30.
-\frac{3}{4}
Reduce the fraction \frac{-30}{40} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}