Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\sqrt{\frac{6+2}{3}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Multiply 2 and 3 to get 6.
3\sqrt{\frac{8}{3}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Add 6 and 2 to get 8.
3\times \frac{\sqrt{8}}{\sqrt{3}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
3\times \frac{2\sqrt{2}}{\sqrt{3}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
3\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
3\times \frac{2\sqrt{2}\sqrt{3}}{3}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
The square of \sqrt{3} is 3.
3\times \frac{2\sqrt{6}}{3}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{6}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Cancel out 3 and 3.
2\sqrt{6}+\frac{1}{2}\times \frac{\sqrt{2}}{\sqrt{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
2\sqrt{6}+\frac{1}{2}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(-\frac{1}{8}\right)\sqrt{15}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
2\sqrt{6}+\frac{1}{2}\times \frac{\sqrt{2}\sqrt{5}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
The square of \sqrt{5} is 5.
2\sqrt{6}+\frac{1}{2}\times \frac{\sqrt{10}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{6}+\frac{1\left(-1\right)}{2\times 8}\times \frac{\sqrt{10}}{5}\sqrt{15}
Multiply \frac{1}{2} times -\frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
2\sqrt{6}+\frac{-1}{16}\times \frac{\sqrt{10}}{5}\sqrt{15}
Do the multiplications in the fraction \frac{1\left(-1\right)}{2\times 8}.
2\sqrt{6}-\frac{1}{16}\times \frac{\sqrt{10}}{5}\sqrt{15}
Fraction \frac{-1}{16} can be rewritten as -\frac{1}{16} by extracting the negative sign.
2\sqrt{6}+\frac{-\sqrt{10}}{16\times 5}\sqrt{15}
Multiply -\frac{1}{16} times \frac{\sqrt{10}}{5} by multiplying numerator times numerator and denominator times denominator.
2\sqrt{6}+\frac{-\sqrt{10}\sqrt{15}}{16\times 5}
Express \frac{-\sqrt{10}}{16\times 5}\sqrt{15} as a single fraction.
\frac{2\sqrt{6}\times 16\times 5}{16\times 5}+\frac{-\sqrt{10}\sqrt{15}}{16\times 5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{6} times \frac{16\times 5}{16\times 5}.
\frac{2\sqrt{6}\times 16\times 5-\sqrt{10}\sqrt{15}}{16\times 5}
Since \frac{2\sqrt{6}\times 16\times 5}{16\times 5} and \frac{-\sqrt{10}\sqrt{15}}{16\times 5} have the same denominator, add them by adding their numerators.
\frac{160\sqrt{6}-5\sqrt{6}}{16\times 5}
Do the multiplications in 2\sqrt{6}\times 16\times 5-\sqrt{10}\sqrt{15}.
\frac{155\sqrt{6}}{16\times 5}
Do the calculations in 160\sqrt{6}-5\sqrt{6}.
\frac{31\sqrt{6}}{16}
Cancel out 5 in both numerator and denominator.