Evaluate
\frac{203\sqrt{3}}{9}\approx 39.067368215
Share
Copied to clipboard
3\times 7\sqrt{3}-\frac{7}{3}\sqrt{\frac{1}{3}}+7\sqrt{\frac{1}{3}}
Factor 147=7^{2}\times 3. Rewrite the square root of the product \sqrt{7^{2}\times 3} as the product of square roots \sqrt{7^{2}}\sqrt{3}. Take the square root of 7^{2}.
21\sqrt{3}-\frac{7}{3}\sqrt{\frac{1}{3}}+7\sqrt{\frac{1}{3}}
Multiply 3 and 7 to get 21.
21\sqrt{3}-\frac{7}{3}\times \frac{\sqrt{1}}{\sqrt{3}}+7\sqrt{\frac{1}{3}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
21\sqrt{3}-\frac{7}{3}\times \frac{1}{\sqrt{3}}+7\sqrt{\frac{1}{3}}
Calculate the square root of 1 and get 1.
21\sqrt{3}-\frac{7}{3}\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+7\sqrt{\frac{1}{3}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
21\sqrt{3}-\frac{7}{3}\times \frac{\sqrt{3}}{3}+7\sqrt{\frac{1}{3}}
The square of \sqrt{3} is 3.
21\sqrt{3}+\frac{-7\sqrt{3}}{3\times 3}+7\sqrt{\frac{1}{3}}
Multiply -\frac{7}{3} times \frac{\sqrt{3}}{3} by multiplying numerator times numerator and denominator times denominator.
21\sqrt{3}+\frac{-7\sqrt{3}}{3\times 3}+7\times \frac{\sqrt{1}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
21\sqrt{3}+\frac{-7\sqrt{3}}{3\times 3}+7\times \frac{1}{\sqrt{3}}
Calculate the square root of 1 and get 1.
21\sqrt{3}+\frac{-7\sqrt{3}}{3\times 3}+7\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
21\sqrt{3}+\frac{-7\sqrt{3}}{3\times 3}+7\times \frac{\sqrt{3}}{3}
The square of \sqrt{3} is 3.
21\sqrt{3}+\frac{-7\sqrt{3}}{3\times 3}+\frac{7\sqrt{3}}{3}
Express 7\times \frac{\sqrt{3}}{3} as a single fraction.
\frac{70}{3}\sqrt{3}+\frac{-7\sqrt{3}}{3\times 3}
Combine 21\sqrt{3} and \frac{7\sqrt{3}}{3} to get \frac{70}{3}\sqrt{3}.
\frac{70}{3}\sqrt{3}+\frac{-7\sqrt{3}}{9}
Multiply 3 and 3 to get 9.
\frac{203}{9}\sqrt{3}
Combine \frac{70}{3}\sqrt{3} and \frac{-7\sqrt{3}}{9} to get \frac{203}{9}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}