Evaluate
-\frac{383\sqrt{2}}{15}\approx -36.109586293
Share
Copied to clipboard
3\times \frac{\sqrt{2}}{\sqrt{9}}-5\sqrt{\frac{2}{9}}-5\sqrt{50}+\frac{2}{3}\sqrt{\frac{2}{25}}
Rewrite the square root of the division \sqrt{\frac{2}{9}} as the division of square roots \frac{\sqrt{2}}{\sqrt{9}}.
3\times \frac{\sqrt{2}}{3}-5\sqrt{\frac{2}{9}}-5\sqrt{50}+\frac{2}{3}\sqrt{\frac{2}{25}}
Calculate the square root of 9 and get 3.
\sqrt{2}-5\sqrt{\frac{2}{9}}-5\sqrt{50}+\frac{2}{3}\sqrt{\frac{2}{25}}
Cancel out 3 and 3.
\sqrt{2}-5\times \frac{\sqrt{2}}{\sqrt{9}}-5\sqrt{50}+\frac{2}{3}\sqrt{\frac{2}{25}}
Rewrite the square root of the division \sqrt{\frac{2}{9}} as the division of square roots \frac{\sqrt{2}}{\sqrt{9}}.
\sqrt{2}-5\times \frac{\sqrt{2}}{3}-5\sqrt{50}+\frac{2}{3}\sqrt{\frac{2}{25}}
Calculate the square root of 9 and get 3.
\sqrt{2}+\frac{-5\sqrt{2}}{3}-5\sqrt{50}+\frac{2}{3}\sqrt{\frac{2}{25}}
Express -5\times \frac{\sqrt{2}}{3} as a single fraction.
\sqrt{2}+\frac{-5\sqrt{2}}{3}-5\times 5\sqrt{2}+\frac{2}{3}\sqrt{\frac{2}{25}}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\sqrt{2}+\frac{-5\sqrt{2}}{3}-25\sqrt{2}+\frac{2}{3}\sqrt{\frac{2}{25}}
Multiply -5 and 5 to get -25.
-24\sqrt{2}+\frac{-5\sqrt{2}}{3}+\frac{2}{3}\sqrt{\frac{2}{25}}
Combine \sqrt{2} and -25\sqrt{2} to get -24\sqrt{2}.
-24\sqrt{2}+\frac{-5\sqrt{2}}{3}+\frac{2}{3}\times \frac{\sqrt{2}}{\sqrt{25}}
Rewrite the square root of the division \sqrt{\frac{2}{25}} as the division of square roots \frac{\sqrt{2}}{\sqrt{25}}.
-24\sqrt{2}+\frac{-5\sqrt{2}}{3}+\frac{2}{3}\times \frac{\sqrt{2}}{5}
Calculate the square root of 25 and get 5.
-24\sqrt{2}+\frac{-5\sqrt{2}}{3}+\frac{2\sqrt{2}}{3\times 5}
Multiply \frac{2}{3} times \frac{\sqrt{2}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{3\left(-24\right)\sqrt{2}}{3}+\frac{-5\sqrt{2}}{3}+\frac{2\sqrt{2}}{3\times 5}
To add or subtract expressions, expand them to make their denominators the same. Multiply -24\sqrt{2} times \frac{3}{3}.
\frac{3\left(-24\right)\sqrt{2}-5\sqrt{2}}{3}+\frac{2\sqrt{2}}{3\times 5}
Since \frac{3\left(-24\right)\sqrt{2}}{3} and \frac{-5\sqrt{2}}{3} have the same denominator, add them by adding their numerators.
\frac{-72\sqrt{2}-5\sqrt{2}}{3}+\frac{2\sqrt{2}}{3\times 5}
Do the multiplications in 3\left(-24\right)\sqrt{2}-5\sqrt{2}.
\frac{-77\sqrt{2}}{3}+\frac{2\sqrt{2}}{3\times 5}
Do the calculations in -72\sqrt{2}-5\sqrt{2}.
\frac{5\left(-77\right)\sqrt{2}}{3\times 5}+\frac{2\sqrt{2}}{3\times 5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 3\times 5 is 3\times 5. Multiply \frac{-77\sqrt{2}}{3} times \frac{5}{5}.
\frac{5\left(-77\right)\sqrt{2}+2\sqrt{2}}{3\times 5}
Since \frac{5\left(-77\right)\sqrt{2}}{3\times 5} and \frac{2\sqrt{2}}{3\times 5} have the same denominator, add them by adding their numerators.
\frac{-385\sqrt{2}+2\sqrt{2}}{3\times 5}
Do the multiplications in 5\left(-77\right)\sqrt{2}+2\sqrt{2}.
\frac{-383\sqrt{2}}{3\times 5}
Do the calculations in -385\sqrt{2}+2\sqrt{2}.
\frac{-383\sqrt{2}}{15}
Expand 3\times 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}