Solve for x
x\in \left(-\infty,\frac{1}{3}\right)\cup \left(2,\infty\right)
Graph
Share
Copied to clipboard
\frac{2x+1}{x-2}>\frac{-3}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
\frac{2x+1}{x-2}>-1
Divide -3 by 3 to get -1.
x-2>0 x-2<0
Denominator x-2 cannot be zero since division by zero is not defined. There are two cases.
x>2
Consider the case when x-2 is positive. Move -2 to the right hand side.
2x+1>-\left(x-2\right)
The initial inequality does not change the direction when multiplied by x-2 for x-2>0.
2x+1>-x+2
Multiply out the right hand side.
2x+x>-1+2
Move the terms containing x to the left hand side and all other terms to the right hand side.
3x>1
Combine like terms.
x>\frac{1}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
x>2
Consider condition x>2 specified above.
x<2
Now consider the case when x-2 is negative. Move -2 to the right hand side.
2x+1<-\left(x-2\right)
The initial inequality changes the direction when multiplied by x-2 for x-2<0.
2x+1<-x+2
Multiply out the right hand side.
2x+x<-1+2
Move the terms containing x to the left hand side and all other terms to the right hand side.
3x<1
Combine like terms.
x<\frac{1}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
x<\frac{1}{3}
Consider condition x<2 specified above. The result remains the same.
x\in \left(-\infty,\frac{1}{3}\right)\cup \left(2,\infty\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}