Solve for μ
\mu =-3
\mu =\frac{1}{3}\approx 0.333333333
Share
Copied to clipboard
a+b=8 ab=3\left(-3\right)=-9
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3\mu ^{2}+a\mu +b\mu -3. To find a and b, set up a system to be solved.
-1,9 -3,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -9.
-1+9=8 -3+3=0
Calculate the sum for each pair.
a=-1 b=9
The solution is the pair that gives sum 8.
\left(3\mu ^{2}-\mu \right)+\left(9\mu -3\right)
Rewrite 3\mu ^{2}+8\mu -3 as \left(3\mu ^{2}-\mu \right)+\left(9\mu -3\right).
\mu \left(3\mu -1\right)+3\left(3\mu -1\right)
Factor out \mu in the first and 3 in the second group.
\left(3\mu -1\right)\left(\mu +3\right)
Factor out common term 3\mu -1 by using distributive property.
\mu =\frac{1}{3} \mu =-3
To find equation solutions, solve 3\mu -1=0 and \mu +3=0.
3\mu ^{2}+8\mu -3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\mu =\frac{-8±\sqrt{8^{2}-4\times 3\left(-3\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 8 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\mu =\frac{-8±\sqrt{64-4\times 3\left(-3\right)}}{2\times 3}
Square 8.
\mu =\frac{-8±\sqrt{64-12\left(-3\right)}}{2\times 3}
Multiply -4 times 3.
\mu =\frac{-8±\sqrt{64+36}}{2\times 3}
Multiply -12 times -3.
\mu =\frac{-8±\sqrt{100}}{2\times 3}
Add 64 to 36.
\mu =\frac{-8±10}{2\times 3}
Take the square root of 100.
\mu =\frac{-8±10}{6}
Multiply 2 times 3.
\mu =\frac{2}{6}
Now solve the equation \mu =\frac{-8±10}{6} when ± is plus. Add -8 to 10.
\mu =\frac{1}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\mu =-\frac{18}{6}
Now solve the equation \mu =\frac{-8±10}{6} when ± is minus. Subtract 10 from -8.
\mu =-3
Divide -18 by 6.
\mu =\frac{1}{3} \mu =-3
The equation is now solved.
3\mu ^{2}+8\mu -3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3\mu ^{2}+8\mu -3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
3\mu ^{2}+8\mu =-\left(-3\right)
Subtracting -3 from itself leaves 0.
3\mu ^{2}+8\mu =3
Subtract -3 from 0.
\frac{3\mu ^{2}+8\mu }{3}=\frac{3}{3}
Divide both sides by 3.
\mu ^{2}+\frac{8}{3}\mu =\frac{3}{3}
Dividing by 3 undoes the multiplication by 3.
\mu ^{2}+\frac{8}{3}\mu =1
Divide 3 by 3.
\mu ^{2}+\frac{8}{3}\mu +\left(\frac{4}{3}\right)^{2}=1+\left(\frac{4}{3}\right)^{2}
Divide \frac{8}{3}, the coefficient of the x term, by 2 to get \frac{4}{3}. Then add the square of \frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\mu ^{2}+\frac{8}{3}\mu +\frac{16}{9}=1+\frac{16}{9}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
\mu ^{2}+\frac{8}{3}\mu +\frac{16}{9}=\frac{25}{9}
Add 1 to \frac{16}{9}.
\left(\mu +\frac{4}{3}\right)^{2}=\frac{25}{9}
Factor \mu ^{2}+\frac{8}{3}\mu +\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\mu +\frac{4}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
Take the square root of both sides of the equation.
\mu +\frac{4}{3}=\frac{5}{3} \mu +\frac{4}{3}=-\frac{5}{3}
Simplify.
\mu =\frac{1}{3} \mu =-3
Subtract \frac{4}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}