Solve for x
x = -\frac{106}{9} = -11\frac{7}{9} \approx -11.777777778
Graph
Share
Copied to clipboard
-12x+36=7\left(-3x-10\right)
Use the distributive property to multiply 3 by -4x+12.
-12x+36=-21x-70
Use the distributive property to multiply 7 by -3x-10.
-12x+36+21x=-70
Add 21x to both sides.
9x+36=-70
Combine -12x and 21x to get 9x.
9x=-70-36
Subtract 36 from both sides.
9x=-106
Subtract 36 from -70 to get -106.
x=\frac{-106}{9}
Divide both sides by 9.
x=-\frac{106}{9}
Fraction \frac{-106}{9} can be rewritten as -\frac{106}{9} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}